Skip to Main Content
Book Chapter

Review of the Structural Relationships of the Kaolin Minerals

By
Sturges W. Bailey
Sturges W. Bailey
Department of Geology and Geophysics, University of Wisconsin, Madison, WI 63706
Search for other works by this author on:
Published:
January 01, 1993

Abstract

Kaolinite has a distorted 1M sequence of layers with the octahedral vacancy said to be at the B site in every layer. The O..H vectors of the surface OH groups are quasinormal to (001), and that of the inner OH is parallel to (001) in space group C1. The major defects present in kaolinite are stacking mistakes that are related to the usual −a1/3 interlayer shifts by a pseudo-mirror plane along the diagonal of the unit cell base plus the presence of a few vacancies in the C sites. Single crystals are always twinned by ±120° rotations about the cleavage normal to create equal volumes of three domains of different orientations. These may form by random adoption of sites A,B,C as the vacancy during initial growth, followed by distortion of each domain to triclinic geometry. After distortion, the vacancy appears to be at the same site in each domain when using conventional triclinic axes, but with the domains rotated by 120°. The designation of B as the usual vacant site by recent authors is considered an error in nomenclature, with the vacancy really in the C site.

Dickite has the same 1M stacking sequence of layers as kaolinite, but the vacancy alternates regularly between B and C. Nacrite has the R sequence of layers. The octahedral vacancy alternates regularly between B and C, but every other octahedral sheet is rotated 180°. The pattern of vacancies reduces the symmetry to monoclinic and allows selection of an inclined Z axis along which there is a 2-layer repeat.

Halloysite has mainly irregular layer stacking but with a limited tendency for 2M1 stacking in small domains. The presence of interlayer water may be related to the presence of small amounts of Al(IV) that are balanced by exchangeable cations. Rolling of the layers into tubes as a result of lateral misfit of the component sheets is possible only if tetrahedral rotation is blocked by insertion of H2O or exchangeable cations into the ring openings or by dynamic disorder of the water molecules to attract the basal oxygens to rotate in different directions at the same time. Rotation may occur after dehydration and may explain the irreversibility of dehydration. Platy morphologies result when sufficient substitution of Fe3+ for Al increases the lateral dimensions of the octahedral sheet to fit those of the tetrahedral sheet. Spheroidal morphology is due to specific growth conditions.

You do not currently have access to this article.
Don't already have an account? Register

Figures & Tables

Contents

Clay Minerals Society Special Publication

Kaolin Genesis and Utilization

Haydn H. Murray
Haydn H. Murray
Dept. of Geological Sciences Indiana University Bloomington, IN 47405
Search for other works by this author on:
Wayne M. Bundy
Wayne M. Bundy
3026 Chase Lane Bloomington, IN 47401
Search for other works by this author on:
Colin C. Harvey
Colin C. Harvey
Dept. of Geological Sciences Indiana University Bloomington, IN 47405
Search for other works by this author on:
Clay Minerals Society
Volume
1
ISBN electronic:
9781881208389
Publication date:
January 01, 1993

GeoRef

References

Related

A comprehensive resource of eBooks for researchers in the Earth Sciences

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal