Supercontinent Cycles Through Earth History

The supercontinent-cycle hypothesis attributes planetary-scale episodic tectonic events to an intrinsic self-organizing mode of mantle convection, governed by the buoyancy of continental lithosphere that resists subduction during the closure of old ocean basins, and the consequent reorganization of mantle convection cells leading to the opening of new ocean basins. Characteristic timescales of the cycle are typically 500 to 700 million years. Proposed spatial patterns of cyclicity range from hemispheric (introversion) to antipodal (extroversion), to precisely between those end members (orthoversion). Advances in our understanding can arise from theoretical or numerical modelling, primary data acquisition relevant to continental reconstructions, and spatiotemporal correlations between plate kinematics, geodynamic events and palaeoenvironmental history. The palaeogeographic record of supercontinental tectonics on Earth is still under development. The contributions in this Special Publication provide snapshots in time of these investigations and indicate that Earth’s palaeogeographic record incorporates elements of all three end-member spatial patterns.
Tectonostratigraphic evolution of the c. 780–730 Ma Beck Spring Dolomite: Basin Formation in the core of Rodinia
-
Published:January 01, 2016
-
CiteCitation
Emily F. Smith, Francis A. MacDonald, James L. Crowley, Eben B. Hodgin, Daniel P. Schrag, 2016. "Tectonostratigraphic evolution of the c. 780–730 Ma Beck Spring Dolomite: Basin Formation in the core of Rodinia", Supercontinent Cycles Through Earth History, Z. X. Li, D. A. D. Evans, J. B. Murphy
Download citation file:
- Share
-
Tools
Abstract
The Beck Spring Dolomite is a mixed carbonate–siliciclastic succession exposed in Death Valley, California, that was deposited between 780 and 717 Ma. Along with its bounding units, the Horse Thief Springs Formation below and unit KP1 of the Kingston Peak Formation above, the Beck Spring Dolomite were deposited in one of the ChUMP (Chuar–Uinta Mountains–Pahrump) basins with subsidence commonly attributed to the nascent rifting of Rodinia. These pre-Sturtian successions preserve eukaryotic microfossil assemblages, diverse microbialites, and large carbon isotope anomalies directly below Sturtian-age glacial deposits. Here we present new geological mapping, measured stratigraphic sections, carbon isotope chemostratigraphy and detrital...