Skip to Main Content
Skip Nav Destination

Abstract

A UK repository concept currently under consideration for the disposal of intermediate-level radioactive waste and some low-level waste not suitable for surface disposal involves using large quantities of cementitious materials for construction, grouting, waste containers, waste isolation matrix and buffer/backfill. CO2 generated from the degradation of organic material in the waste will result in cement carbonation and associated mineralogical changes. Hydraulic and gas permeability tests were performed on Nirex Reference Vault Backfill (NRVB) cement at 40 °C and either 4 or 8 MPa. Carbonation reactions using CO2 gas halved the permeability of the NRVB under simulated repository conditions. A greater decrease in permeability (by three orders of magnitude) was found during carbonation using dissolved CO2. Mineralogical changes were found to occur throughout the cement as a result of the reaction with CO2. However, a narrow zone along the leading edge of a migrating reaction front was associated with the greatest decrease in porosity. Fluid pressures increased slightly due to permeability reductions but fluid flow still continued (albeit at a lower rate) preventing the build-up of overly high pressures. Overall, the observed reductions in permeability could be beneficial in that they may help reduce the potential for fluid flow and radionuclide migration. However, continued carbonation could lead to potential issues with regards to gas pressure build-up.

You do not currently have access to this chapter.

Figures & Tables

Contents

GeoRef

References

Related

Citing Books via

Close Modal

or Create an Account

Close Modal
Close Modal