The Role of Volatiles in the Genesis, Evolution and Eruption of Arc Magmas

The subduction zone volatile cycle is key to understanding the petrogenesis, transport, storage and eruption of arc magmas. Volatiles control the flux of slab components into the mantle wedge, are responsible for melt generation through lowering the solidi of mantle materials and influence the crystallizing phase assemblages in the overriding crust. Further, the rates and extents of degassing during magma storage and decompression affect magma rheology, ultimately control eruption style and have consequences for the environmental impact of explosive arc volcanism. This book highlights recent progress in constraining the role of volatiles in magmatic processes.
Individual book sections are devoted to tracing volatiles from the subducting slab to the overriding crust, their role in subvolcanic processes and eruption triggering, as well as magmatic-hydrothermal systems and volcanic degassing. For the first time, all aspects of the overarching theme of volatile cycling are covered in detail within a single volume.
Magmatic volatile distribution as recorded by rhyolitic melt inclusions in the Taupo Volcanic Zone, New Zealand
-
Published:January 01, 2015
-
CiteCitation
Florence Bégué, Darren M. Gravley, Isabelle Chambefort, Chad D. Deering, Ben M. Kennedy, 2015. "Magmatic volatile distribution as recorded by rhyolitic melt inclusions in the Taupo Volcanic Zone, New Zealand", The Role of Volatiles in the Genesis, Evolution and Eruption of Arc Magmas, G. F. Zellmer, M. Edmonds, S. M. Straub
Download citation file:
- Share
-
Tools
Abstract
The central Taupo Volcanic Zone (TVZ) is an actively rifting continental arc and is well known for its exceptionally high rate of rhyolitic magma generation and frequent caldera-forming eruptions. Two end-member types of rhyolites (R1 and R2) have been previously identified based on differences in their bulk-rock chemistry and mineral assemblage with hydrous phases crystallizing in the R1 type, which are not present or only rare in R2 rhyolites. Here we present new trace element and volatile data from rhyolitic melt inclusions measured in several representative eruptive deposits (R1 and R2 rhyolites) from the central TVZ to examine their...