Skip to Main Content

Abstract

Chalk is an important reservoir rock. However, owing to its low permeability, fractures are key to producing hydrocarbons from chalk reservoirs. Fractures in chalk usually form one of three geometric patterns: localized fractures (commonly concentric rings) developed around tips, bends and splays in larger faults; regularly spaced regional fracture sets; and fracture corridors comprising narrow zones of closely spaced parallel fractures. Localized fracture patterns are likely to give only local permeability enhancement; regional fracture sets and, especially, fracture corridors may provide long, high-permeability flow pathways through the chalk. Field mapping shows that both localized fracture patterns and fracture corridors often nucleate around larger faults; however, the fracture corridors rapidly propagate away from the faults following the regional stress orientation. It is therefore not necessary to know the detailed fault geometry to predict the geometry of the fracture corridors, although the fault density can help to predict the spacing of the fracture corridors. Mechanical modelling shows that while localized fracture patterns can form under normal fluid pressure conditions as a result of local stress anomalies around fault bends, tips and splays, fracture corridors can only form under conditions of fluid overpressure. Once they nucleate, they will continue to propagate until they either intersect another fault or the fluid pressure in them is dissipated.

You do not currently have access to this chapter.

Figures & Tables

Contents

GeoRef

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal