Skip to Main Content


Diagenetic changes such as cementation or dissolution have a strong control on carbonate pore structure, and often disconnect the original intergranular pore space. Spatial distribution of submicron porosity (microporosity) that develops in the process, as well as its influence on flow properties, is difficult to image and characterize. Yet, a petrophysically rigorous pore-scale model that accounts for submicron porosity interconnectivity would help in the understanding and development of carbonate reservoirs dominated by microporosity. We present algorithms to geometrically match pore–throat networks from two separate length scales that can be extracted directly from three-dimensional (3D) rock images, or be constructed to match the relevant measured properties. We evaluate the combined influence of cementation and dissolution using a Bentheimer Sandstone sample, as well as image-identified microporosity on flow transport properties in an Estaillades Limestone sample.

You do not currently have access to this chapter.

Figures & Tables





Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal