Skip to Main Content
Skip Nav Destination


Deep argillaceous rocks are reducing environments. When exposed to air, reduced minerals of these rocks react with oxygen, modifying the surrounding chemical conditions. Thus, oxidation is an issue in studies about the confining properties of such rocks in the framework of geological disposal projects for radioactive waste. Previous studies in several underground research laboratories (URLs) in argillaceous rocks have shown that oxidation reactions mainly occurred in the excavation-induced fracture network surrounding the drifts. In the Callovian–Oxfordian argillaceous rock, at −490 m in drifts from the Meuse/Haute-Marne URL, oxidized features were systematically looked for in 115 borehole cores. The concerned drifts were of various ages, from a few days to 6.5 years. After 5 months, oxidized features were encountered in numerous excavation-induced extensional fractures. In excavation-induced shear fractures, oxidized features were observed in a few borehole cores after 2 years, and they became frequent after 6 years. In all cases, the oxidized features observed were found on the fracture walls or were connected to them, and were less than 1.8 m from the drift walls. These observations about the oxidation front and its evolution over time provide insights regarding the properties of excavation-induced fractures with respect to oxygen transfer.

You do not currently have access to this chapter.

Figures & Tables





Citing Books via

Close Modal

or Create an Account

Close Modal
Close Modal