Skip to Main Content


Of the features that characterize large shield volcanoes on Mars, flank terraces remain the most enigmatic. Several competing mechanisms have been proposed for these laterally expansive, topographically subtle landforms. Here we test the hypothesis that horizontal contraction of a volcano in response to the down-flexing of its underlying basement leads to flank terracing. We performed a series of analogue models consisting of a conical sand–plaster load emplaced on a basement comprising a layer of brittle sand–plaster atop a reservoir of viscoelastic silicone. Our experiments consistently produced a suite of structures that included a zone of concentric extension distal to the conical load, a flexural trough adjacent to the load base and convexities (terraces) on the cone’s flanks. The effects of variations in the thickness of the brittle basal layer, as well as in the volume, slope and planform eccentricity of the cone, were also investigated. For a given cone geometry, we find that terrace formation is enhanced as the brittle basement thickness decreases, but that a sufficiently thick brittle layer can enhance the basement’s resistance to loading such that terracing of the cone is reduced or even inhibited altogether. For a given brittle basement thickness, terracing is reduced with decreasing cone slope and/or volume. Our experimental results compare well morphologically to observations of terraced edifices on Mars, and so provide a framework with which to understand the developmental history of large shield volcanoes on the Red Planet.

You do not currently have access to this chapter.

Figures & Tables





Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal