Skip to Main Content

Abstract

We use Pn-tomography to map lithospheric mantle velocity and anisotropy at the Arabia–Eurasia plate boundary, namely Makran and Zagros. We use catalogue events recorded by Oman, UAE, Saudi Arabia and Iran networks, the International Seismological Centre and the National Earthquake Information Center. Events of 1.8–16 degree distances were used for this Pn-tomography. In this study we show that the northeastern Arabia plate is characterized by cold and stable lithospheric mantle. Contrastingly, Eurasia is underlain by hot unstable lithospheric mantle. The Arabia–Eurasia lithospheric suture follows the Zagros collision surface suture within c. 70 km lateral proximity. At the southernmost Zagros collision, the Arabia lithosphere is inferred to extend further NE beneath Lut Block. This may be indicative of extended subduction of Arabia beneath Eurasia in southernmost Zagros. We find that eastern Makran shows typical subduction characteristics, with inferred oceanic lithosphere underlying the eastern Oman Sea and hot unstable lithospheric mantle below overriding Helmand Block. Contrastingly, the western Makran subduction zone including Arabia and Eurasia continental sides is underlain by a low-Pn-velocity anomaly, indicative of hot unstable lithospheric mantle. Surface evidence show that western, southern and eastern boundaries of western Makran low-Pn-velocity anomaly may represent a Late Neogene reactivated Precambrian terrane boundary in north Oman.

You do not currently have access to this chapter.

Figures & Tables

Contents

GeoRef

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal