Ore Deposits in an Evolving Earth

Ore deposits form by a variety of natural processes that concentrate elements into a volume that can be economically mined. Their type, character and abundance reflect the environment in which they formed and thus they preserve key evidence for the evolution of magmatic and tectonic processes, the state of the atmosphere and hydrosphere, and the evolution of life over geological time. This volume presents 13 papers on topical subjects in ore deposit research viewed in the context of Earth evolution. These diverse, yet interlinked, papers cover topics including: controls on the temporal and spatial distribution of ore deposits; the sources of fluid, gold and other components of orogenic gold deposits; the degree of oxygenation in the Neoproterozoic ocean; bacterial immobilization of gold in the semi-arid near-surface environment; and mineral resources for the future, including issues of resource estimation, sustainability of supply and the criticality of certain elements to society.
The Massawa gold deposit, Eastern Senegal, West Africa: an orogenic gold deposit sourced from magmatically derived fluids?
-
Published:January 01, 2015
-
CiteCitation
P. J. Treloar, D. M. Lawrence, D. Senghor, A. Boyce, P. Harbidge, 2015. "The Massawa gold deposit, Eastern Senegal, West Africa: an orogenic gold deposit sourced from magmatically derived fluids?", Ore Deposits in an Evolving Earth, G. R. T. Jenkin, P. A. J. Lusty, I. Mcdonald, M. P. Smith, A. J. Boyce, J. J. Wilkinson
Download citation file:
- Share
-
Tools
Abstract
The Massawa gold project is situated on the Senegalese side of the highly prospective/productive Palaeo-Proterozoic (Birimian) Kédougou–Kéniéba inlier, which hosts several world-class orogenic gold deposits/districts in western Mali (e.g. Loulo and Sadiola). The Massawa ore body has a strike length of at least 4 km and a current resource of 3.61 Moz at a grade of 2.8 g t−1. The ore body is structurally controlled and located within a package of low-grade regionally metamorphosed volcaniclastic sediments (agglomerates, tuffs and ash-tuffs), quartz–feldspar and lithic wackes, carbonaceous shales, hydrothermal breccias, and gabbro and porphyry sills. These rocks have undergone...