Skip to Main Content
Book Chapter

Measuring volcanic plume and ash properties from space

By
R. G. Grainger
R. G. Grainger
1
Sub-Department of Atmospheric, Oceanic and Planetary Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
Search for other works by this author on:
D. M. Peters
D. M. Peters
1
Sub-Department of Atmospheric, Oceanic and Planetary Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
Search for other works by this author on:
G. E. Thomas
G. E. Thomas
1
Sub-Department of Atmospheric, Oceanic and Planetary Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
Search for other works by this author on:
A. J. A. Smith
A. J. A. Smith
1
Sub-Department of Atmospheric, Oceanic and Planetary Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
Search for other works by this author on:
R. Siddans
R. Siddans
2
Science and Technology Facilities Council Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
Search for other works by this author on:
E. Carboni
E. Carboni
1
Sub-Department of Atmospheric, Oceanic and Planetary Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
Search for other works by this author on:
A. Dudhia
A. Dudhia
1
Sub-Department of Atmospheric, Oceanic and Planetary Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
Search for other works by this author on:
Published:
January 01, 2013

Abstract

The remote sensing of volcanic ash plumes from space can provide a warning of an aviation hazard and knowledge on eruption processes and radiative effects. In this paper new algorithms are presented to provide volcanic plume properties from measurements by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), the Advanced Along Track Scanning Radiometer (AATSR) and the Spinning Enhanced Visible and Infrared Imager (SEVIRI). A challenge of remote sensing is to provide near-real-time methods to identify, and so warn of, the presence of volcanic ash. To achieve this, a singular vector decomposition method has been developed for the MIPAS instrument on board the Environmental Satellite. This method was applied to observations of the ash clouds from the eruptions of Nabro and the Puyehue–Cordón Caulle in 2011 and led to a sensitive volcanic signal flag which was capable of tracking changes in the volcanic signal spectra as the plume evolved. A second challenge for remote sensing is to identify the ash plume height. This is a critical parameter for the initialization of algorithms that numerically model the evolution and transport of a volcanic plume. As MIPAS is a limb sounder, the identification of ash also provides an estimate of height provided the plume is above about 6 km. This is complemented by a new algorithm, Stereo Ash Plume Height Retrieval Algorithm, that identifies plume height using the parallax between images provided by Along Track Scanning Radiometer-type instruments. The algorithm was tested on an image taken at 14:01 GMT on 6 June 2011 of the Puyehue–Cordón Caulle eruption plume and gave a height of 11.9±1.4 km, which agreed with the value derived from the location of the plume shadow (12.7±1.8 km). This plume height was similar to the height observed by MIPAS (12 ± 1.5 km) at 02:56 GMT on 6 June. The quantitative use of satellite imagery and the full exploitation of high-resolution spectral measurements of ash depends upon knowing the optical properties of the observed ash. Laboratory measurements of ash from the 1993 eruption of Mt Aso, Japan have been used to determine the refractive indices from 1 to 20 µm. These preliminary measurements have spectral features similar to ash values that have been used to date, albeit with slightly different positions and strengths of the absorption bands. The refractive indices have been used to retrieve ash properties (plume height, optical depth and ash effective radius) from AATSR and SEVIRI instruments using two versions of Oxford-RAL Retrieval of Aerosol and Cloud (ORAC) algorithm. For AATSR a new ash cloud type was used in ORAC for the analysis of the plume from the 2011 Eyjafjallajökull eruption. For the first c. 500 km of the plume ORAC gave values for plume height of 2.5–6.5 km, optical depth 1–2.5 and effective radius 3–7 µm, which are in agreement with other observations. A weakness of the algorithm occurs when underlying cloud invalidates the assumption of a single cloud layer. This is rectified in a modified version of ORAC applied to SEVIRI measurements. In this case an extra model of a cloud underlying the ash plume was included in the range of applied models. In cases where the plume overlay cloud, this new model worked well, showing good agreement with correlative Cloud–Aerosol Lidar with Orthogonal Polarization observations.

You do not currently have access to this article.

Figures & Tables

Contents

Geological Society, London, Special Publications

Remote Sensing of Volcanoes and Volcanic Processes: Integrating Observation and Modelling

D. M. Pyle
D. M. Pyle
University of Oxford, UK
Search for other works by this author on:
T. A. Mather
T. A. Mather
University of Oxford, UK
Search for other works by this author on:
J. Biggs
J. Biggs
University of Bristol, UK
Search for other works by this author on:
Geological Society of London
Volume
380
ISBN electronic:
9781862396456
Publication date:
January 01, 2013

GeoRef

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal