Skip to Main Content
Book Chapter

Neoarchaean crustal growth by combined arc–plume action: evidence from the Kadiri Greenstone Belt, eastern Dharwar craton, India

By
Sukanta Dey
Sukanta Dey
1
Department of Applied Geology, Indian School of Mines, Dhanbad 826004, India
Search for other works by this author on:
Jinia Nandy
Jinia Nandy
1
Department of Applied Geology, Indian School of Mines, Dhanbad 826004, India
Search for other works by this author on:
A. K. Choudhary
A. K. Choudhary
2
Institute Instrumentation Centre, Indian Institute of Technology Roorkee, Roorkee 247667, India
Search for other works by this author on:
Yongsheng Liu
Yongsheng Liu
3
State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
Search for other works by this author on:
Keqing Zong
Keqing Zong
3
State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
Search for other works by this author on:
Published:
January 01, 2015

Abstract

Field and geochemical studies combined with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U–Pb dating set important constraints on the timing and petrogenesis of volcanic rocks of the Neoarchaean Kadiri greenstone belt and the mechanism of crust formation in the eastern Dharwar craton (EDC). The volcanic rocks are divided into three suites: tholeiitic basalts, calc-alkaline high-Mg# andesites and dominant dacites–rhyolites. The basalts (pillowed in places) show flat rare earth element (REE) and primordial mantle-normalized trace element patterns, but have minor negative Nb and Ta anomalies. They are interpreted as mantle plume-related oceanic plateau basalts whose source contained minor continental crustal input. The andesites are characterized by high Mg# (0.66–0.52), Cr and Ni, with depletion of high-field strength elements (HFSE) and enrichment of light REE (LREE) and large-ion lithophile elements (LILE). They were probably derived from a metasomatized mantle wedge overlying a subducted slab in a continental margin subduction zone. The dacites–rhyolites are silicic rocks (SiO2=61–72 wt%) with low Cr and Ni, K2O/Na2O mostly 0.5–1.1, highly fractionated REE patterns, enrichments of LILE and distinctly negative HFSE anomalies. One rhyolite sample yielded a zircon U–Pb age of 2353±32 Ma. This suite is similar to potassic adakites and is explained as the product of deep melting of thickened crust in the arc with a significant older crustal component. Collision between a continental margin arc with an oceanic plateau followed by slab break-off, upwelling of hot asthenosphere and extensive crustal reworking in a sustained compressional regime is proposed for the geodynamic evolution of the area. This is in corroboration with the scenario of EDC as a Neoarchaean hot orogen as suggested recently by some workers.

Supplementary material:

Details of whole-rock major and trace element determination, Nd isotope analysis and zircon U–Pb dating and trace element analysis, the geographical coordinates of the samples and the values of the international rock standards analysed are available at http://www.geolsoc.org.uk/SUP18660

You do not currently have access to this article.

Figures & Tables

Contents

Geological Society, London, Special Publications

Continent Formation Through Time

N. M. W. Roberts
N. M. W. Roberts
NERC Isotope Geosciences Laboratory, UK
Search for other works by this author on:
M. Van Kranendonk
M. Van Kranendonk
University of New South Wales, Australia
Search for other works by this author on:
S. Parman
S. Parman
Brown University, USA
Search for other works by this author on:
S. Shirey
S. Shirey
Carnegie Institution of Washington, USA
Search for other works by this author on:
P. D. Clift
P. D. Clift
Louisiana State University, USA
Search for other works by this author on:
Geological Society of London
Volume
389
ISBN electronic:
9781862396654
Publication date:
January 01, 2015

GeoRef

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal