Skip to Main Content
Book Chapter

Chapter 19: Isostatic residual gravity and crustal geology of the United States

By
R. C. Jachens
R. C. Jachens
Search for other works by this author on:
R. W. Simpson
R. W. Simpson
Search for other works by this author on:
R. J. Blakely
R. J. Blakely
Search for other works by this author on:
R. W. Saltus
R. W. Saltus
Search for other works by this author on:
Published:
January 01, 1989

A new isostatic residual gravity map of the conterminous United States presents continent-wide gravity data in a form that can be readily used, with geologic information and other geophysical data, in studies of the composition and structure of the continental crust. This map was produced from the gridded gravity data on which the recently released Gravity Anomaly Map of the United States is based. About 1 million onland and 0.8 million offshore gravity observations interpolated to a 4- by 4-km grid serve as the basis for both maps. The Airy-Heiskanen model of isostatic compensation of topography applied to topographic and bathymetric data averaged over 5- by 5-min compartments was used to remove, to first order, the large, long-wavelength Bouguer gravity anomalies caused by deep density distributions that support topographic loads. The parameters used in the Airy-Heiskanen model were topographic density, 2.67 g/cm3; sea-level crustal thickness, 30 km; and density contrast across the base of the model crust, 0.35 g/cm3.

Many of the conspicuous short-wavelength anomalies (widths less than several hundred kilometers) on the isostatic residual gravity map correlate with mapped or near-surface geologic features, and primarily reflect shallow-density distributions rather than any departures from isostatic equilibrium. In general, gravity highs occur over (1) mafic igneous bodies emplaced in rift or magmatic arc settings or as isolated intrusions controlled by structures; (2) accreted slices of mafic oceanic, island-arc, or transitional crust; and (3) uplifted crystalline basement. Gravity lows are found over (1) thick bodies of felsic intrusive or extrusive rocks; (2) sedimentary deposits in extensional, convergent, or transform settings; and (3) depressed crystalline basement. Anomalies with widths as much as 1,000 km or more also appear to reflect crustal properties in many cases—several broad gravity highs are associated with crust having a high average seismic wave velocity, and comparable broad gravity lows occur over areas of low average seismic velocity.

Alternative ways of viewing the isostatic residual gravity data provide additional information about density distributions in the crust. The first-vertical derivative map accentuates gravity anomalies over shallow, abrupt density changes at the expense of those resulting from deeper or more gradual density transitions. The maximum horizontal gradient map contains information about the locations of pronounced density boundaries. Two-dimensional spectral analysis of the gravity data provides a quantitative means for identifying dominant fabrics in the gravity field and for distinguishing various terranes from each other.

Neither Bouguer nor isostatic residual gravity anomalies are particularly well suited for practical modeling of deep structure in conjunction with deep seismic information. However, a scheme in which the entire Earth outside the area of interest is approximated by laterally homogeneous layers and isostatically compensated topography, and in which the area of interest is modeled using the seismic constraints applied in a two-and-one-half-dimensional geometry, holds promise for exploiting useful features of both the Bouguer and isostatic residual gravity anomalies.

You do not currently have access to this article.

Figures & Tables

Contents

GSA Memoirs

Geophysical Framework of the Continental United States

L. C. Pakiser
L. C. Pakiser
Search for other works by this author on:
Walter D. Mooney
Walter D. Mooney
Search for other works by this author on:
Geological Society of America
Volume
172
ISBN print:
9780813711720
Publication date:
January 01, 1989

GeoRef

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal