Skip to Main Content
Book Chapter

Dynamic recrystallization of quartz: Correlation between natural and experimental conditions

By
Michael Stipp
Michael Stipp
Department of Earth Sciences, Basel University, Bernoullistrasse 32, 4056 Basel, Switzerland
Search for other works by this author on:
Holger Stünitz
Holger Stünitz
Department of Earth Sciences, Basel University, Bernoullistrasse 32, 4056 Basel, Switzerland
Search for other works by this author on:
Renée Heilbronner
Renée Heilbronner
Department of Earth Sciences, Basel University, Bernoullistrasse 32, 4056 Basel, Switzerland
Search for other works by this author on:
Stefan M. Schmid
Stefan M. Schmid
Department of Earth Sciences, Basel University, Bernoullistrasse 32, 4056 Basel, Switzerland
Search for other works by this author on:
Published:
January 01, 2002

Abstract

Quartz veins in the Eastern Tonale mylonite zone (Italian Alps) were deformed in strike-slip shear. Due to the synkinematic emplacement of the Adamello Pluton, a temperature gradient between 280°C and 700°C was effected across this fault zone. The resulting dynamic recrystallization microstructures are characteristic of bulging recrystallization, subgrain rotation recrystallization and grain boundary migration recrystallization. The transitions in recrystallization mechanisms are marked by discrete changes of grain size dependence on temperature. Differential stresses are calculated from the recrystallized grain size data using paleopiezometric relationships. Deformation temperatures are obtained from metamorphic reactions in the deformed host rock. Flow stresses and deformation temperatures are used to determine the strain rate of the Tonale mylonites through integration with several published flow laws yielding an average rate of approximately 10−14s−1 to 10−12s−1. The deformation conditions of the natural fault rocks are compared and correlated with three experimental dislocation creep regimes of quartz of Hirth & Tullis. Linking the microstructures of the naturally and experimentally deformed quartz rocks, a recrystallization mechanism map is presented. This map permits the derivation of temperature and strain rate for mylonitic fault rocks once the recrystallization mechanism is known.

You do not currently have access to this article.

Figures & Tables

Contents

Geological Society, London, Special Publications

Deformation Mechanisms, Rheology and Tectonics: Current Status and Future Perspectives

S. de Meer
S. de Meer
Utrecht University, The Netherlands
Search for other works by this author on:
M. R. Drury
M. R. Drury
Utrecht University, The Netherlands
Search for other works by this author on:
J. H. P. de Bresser
J. H. P. de Bresser
Utrecht University, The Netherlands
Search for other works by this author on:
G. M. Pennock
G. M. Pennock
Utrecht University, The Netherlands
Search for other works by this author on:
Geological Society of London
Volume
200
ISBN electronic:
9781862396081
Publication date:
January 01, 2002

GeoRef

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal