Skip to Main Content
Book Chapter

A comparative study of interior layered deposits on Mars

By
Mariam Sowe
Mariam Sowe
1
Planetary Sciences & Remote Sensing, Institute of Geological Sciences, Free University of Berlin, Malteserstrasse 74-100, 12249 Berlin, Germany
Search for other works by this author on:
Ralf Jaumann
Ralf Jaumann
2
Institute of Planetary Research, German Aerospace Center (DLR), Rutherfordstrasse 2, 12489 Berlin, Germany
Search for other works by this author on:
Gerhard Neukum
Gerhard Neukum
1
Planetary Sciences & Remote Sensing, Institute of Geological Sciences, Free University of Berlin, Malteserstrasse 74-100, 12249 Berlin, Germany
Search for other works by this author on:
Published:
January 01, 2011

Abstract

Interior layered deposits (ILDs) of the eastern Valles Marineris and adjacent chaos regions were analysed using high-resolution imagery, topography and spectral data in order to detect possible correlations. We find that ILDs are susceptible to erosion and weathering, as proven by their shapes (mesa, buttes), surface structures (pitted, fluted, yardangs), stair-stepped morphologies at different scales, and metre-sized boulders and talus. ILDs bear hydrated sulphates; consequently, we conclude that aqueous conditions dominated during their formation. Subhorizontal layering and parallel bedding of the ILDs could then indicate that deposition took place under low-energy aquatic conditions. Their superposition on chaotic terrain suggests that they are younger than chaotic terrain and, hence, younger than Late Hesperian. For the hydrated ILDs, which show polyhydrated on top of monohydrated sulphates, we think that formation within an evaporative body is not conceivable and we assume instead that a conversion of sulphates by post-formational humidity changes took place. As hydrated ILDs correlate well with rock fragmentation, we suppose that volume changes due to water content are responsible for rock fragmentation. Despite the different ILD settings, the basic conditions during sedimentation and erosion of ILDs could not have varied greatly because comparable mineralogies and morphologies are found among ILDs.

You do not currently have access to this article.

Figures & Tables

Contents

Geological Society, London, Special Publications

Martian Geomorphology

M. R. Balme
M. R. Balme
Open University, UK
Search for other works by this author on:
A. S. Bargery
A. S. Bargery
Lancaster University, UK
Search for other works by this author on:
C. J. Gallagher
C. J. Gallagher
University College Dublin, Ireland
Search for other works by this author on:
S. Gupta
S. Gupta
Imperial College London, UK
Search for other works by this author on:
Geological Society of London
Volume
356
ISBN electronic:
9781862396043
Publication date:
January 01, 2011

GeoRef

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal