Skip to Main Content
Book Chapter

Seismic structure, crustal architecture and tectonic evolution of the Anatolian–African Plate Boundary and the Cenozoic Orogenic Belts in the Eastern Mediterranean Region

By
Yildirim Dilek
Yildirim Dilek
Department of Geology, Miami University, Oxford, OH 45056, USA
Search for other works by this author on:
Eric Sandvol
Eric Sandvol
Department of Geology Sciences, University of Missouri-Columbia, Columbia, MO 65211, USA
Search for other works by this author on:
Published:
January 01, 2009

Abstract

The modern Anatolian–African plate boundary is represented by a north-dipping subduction zone that has been part of a broad domain of regional convergence between Eurasia and Afro–Arabia since the latest Mesozoic. A series of collisions between Gondwana-derived ribbon continents and trench-roll-back systems in the Tethyan realm produced nearly East–West-trending, subparallel mountain belts with high elevation and thick orogenic crust in this region. Ophiolite emplacement, terrane stacking, high-P and Barrovian metamorphism, and crustal thickening occurred during the accretion of these microcontinents into the upper plates of Tethyan subduction roll-back systems during the Late Cretaceous–Early Eocene. Continued convergence and oceanic lithospheric subduction within the Tethyan realm were punctuated by slab breakoff events following the microcontinental accretion episodes. Slab breakoff resulted in asthenospheric upwelling and partial melting, which facilitated post-collisional magmatism along and across the suture zones. Resumed subduction and slab roll-back-induced upper plate extension triggered a tectonic collapse of the thermally weakened orogenic crust in Anatolia in the late Oligocene–Miocene. This extensional phase resulted in exhumation of high-P rocks and medium- to lower-crustal material leading to the formation of metamorphic core complexes in the hinterland of the young collision zones. The geochemical character of the attendant magmatism has progressed from initial shoshonitic and high-K calc-alkaline to calc-alkaline and alkaline affinities through time, as more asthenosphere-derived melts found their way to the surface with insignificant degrees of crustal contamination. The occurrence of discrete high-velocity bodies in the mantle beneath Anatolia, as deduced from lithospheric seismic velocity data, supports our Tethyan slab breakoff interpretations. Pn velocity and Sn attenuation tomography models indicate that the uppermost mantle is anomalously hot and thin, consistent with the existence of a shallow asthenosphere beneath the collapsing Anatolian orogenic belts and widespread volcanism in this region. The sharp, north-pointing cusp (Isparta Angle) between the Hellenic and Cyprus trenches along the modern Anatolian–African plate boundary corresponds to a subduction-transform edge propagator (STEP) fault, which is an artifact of a slab tear within the downgoing African lithosphere.

You do not currently have access to this article.

Figures & Tables

Contents

Geological Society, London, Special Publications

Ancient Orogens and Modern Analogues

J. B. Murphy
J. B. Murphy
St Francis Xavier University, Canada
Search for other works by this author on:
J. D. Keppie
J. D. Keppie
Universidad Nacional Autonoma de Mexico, Mexico
Search for other works by this author on:
A. J. Hynes
A. J. Hynes
McGill University, Canada
Search for other works by this author on:
Geological Society of London
Volume
327
ISBN electronic:
9781862395756
Publication date:
January 01, 2009

GeoRef

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal