Skip to Main Content
Book Chapter

Extrusion of high-pressure Cache Creek rocks into the Triassic Stikinia–Quesnellia arc of the Canadian Cordillera: implications for terrane analysis of ancient orogens and palaeogeography

By
Jaroslav Dostal
Jaroslav Dostal
Department of Geology, Saint Mary's University, Halifax, Nova Scotia B3H 3C3, Canada
Search for other works by this author on:
J. Duncan Keppie
J. Duncan Keppie
Departamento de Geologı́a Regional, Instituto de Geologia, Universidad Nacional Autonoma de Mexico, 04510 Mexico, D.F., Mexico
Search for other works by this author on:
Filippo Ferri
Filippo Ferri
British Columbia Ministry of Energy and Mines, 1810 Blanchard Street, Victoria, British Columbia V8W 9N3, Canada
Search for other works by this author on:
Published:
January 01, 2009

Abstract

The volcanic Triassic Takla Group constitutes a significant part of Stikinia and Quesnellia, two major terranes of the Canadian Cordillera that are separated by high-pressure rocks of the Cache Creek terrane containing Asian fauna. The geochemical and isotopic characteristics of the Takla Group in Quesnellia and Stikinia are similar, that is, tholeiitic basalts characterized by low abundances of strongly incompatible trace elements, negative Nb anomalies, +6 to +8 ɛNd values, the low initial Sr isotopic ratios, and relatively horizontal chondrite-normalized heavy REE patterns, all features typical of relatively primitive arcs with little or no continental crust involvement. These similarities have led to several geometric models: post-Middle Jurassic duplication by strike-slip faulting, and oroclinal or synformal folding. However, they are all inconsistent with either palaeomagnetic or faunal data, and the presence of a Triassic overstep sequence, which indicates amalgamation c. 50 ma before emplacement of the youngest oceanic rocks of the Cache Creek terrane. An alternative model is proposed: oblique eastward subduction of the Cache Creek accretionary prism and fore-arc producing high-pressure metamorphism, followed by extrusion into the arc and exhumation by the Middle Jurassic. This model implies that these high-pressure rocks, rather than marking an oceanic suture between disparate arc terranes, support a para-autochthonous origin.

You do not currently have access to this article.
Don't already have an account? Register

Figures & Tables

Contents

Geological Society, London, Special Publications

Ancient Orogens and Modern Analogues

J. B. Murphy
J. B. Murphy
St Francis Xavier University, Canada
Search for other works by this author on:
J. D. Keppie
J. D. Keppie
Universidad Nacional Autonoma de Mexico, Mexico
Search for other works by this author on:
A. J. Hynes
A. J. Hynes
McGill University, Canada
Search for other works by this author on:
Geological Society of London
Volume
327
ISBN electronic:
9781862395756
Publication date:
January 01, 2009

GeoRef

References

Related

A comprehensive resource of eBooks for researchers in the Earth Sciences

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Subscribe Now