Skip to Main Content
Skip Nav Destination


We apply low-temperature thermochronology, Rb/Sr geochronology, petrological data, and structural mapping to constrain the timing and kinematics of the Ios metamorphic core complex. Top-to-north extension in the lower plate Headland Shear Zone was active at 18–19 Ma under metamorphic conditions of 475–610 °C and 0.65–1.1 GPa. The South Cyclades Shear Zone/Ios Detachment Fault (SCSZ/IDF) system shows top-to-south extensional shear active at c. 19 Ma at 380–550 °C, with local top-to-north bands. Extensional shear above the SCSZ/IDF is dominantly top-to-south to top-to-SW. PT estimates from an eclogite boudin constrain Eocene high-pressure metamorphism to 430–560 °C and 1.21±0.42 GPa to 0.66±0.37 GPa. Similar low-temperature thermochronometric ages across Ios demonstrate that ductile extensional movement ceased by c. 15 Ma. Exhumation to shallow crustal levels took place between c. 15 and 9 Ma at cooling rates of up to 120 °C Ma−1 with a slow down to <20 °C Ma−1 between 12 and 9 Ma, most likely accommodated by extensional slip at rates of c. 3 km Ma−1 along the top-to-SW Coastal Fault System. We propose a model of bivergent extension for exhumation of the Ios core complex between 19 and 9 Ma, with Ios forming a secondary antithetic top-to-south to top-to-SW extensional fault system to a more dominant top-to-north Naxos/Paros detachment system.

You do not currently have access to this chapter.

Figures & Tables





Citing Books via

Close Modal

or Create an Account

Close Modal
Close Modal