Skip to Main Content
Skip Nav Destination

Reservoir production is highly dependent on reservoir models. A key problem faced in the development of a hydrocarbon reservoir is that of constructing a reservoir model that can generate reliable production forecasts under various development scenarios. Therefore, geological models have to be built in three dimensions (3D). Unfortunately, manual construction of 3D geological models (deterministically) is almost impossible, which explains why geologists often limit their interpretation to two dimensional (2D) correlation panels, fence-diagrams or maps. Consequently, geological conceptual models are rarely included or considerably simplified in reservoir models used for flow simulations and replaced by stochastic or geostatistic approaches. In spite of this admission of failure, sedimentological cross-sections and maps contain most of the knowledge and concepts of sedimentologists. They represent the outcome of sedimentological studies, including available well data, seismic interpretation and especially sedimentological and environmental concepts, incorporating all facies transitions and successions in a high-resolution stratigraphic framework. They allow fine temporal- and spatial-scale sedimentological heterogeneities to be identified. The integration of these fine-scale sedimentological heterogeneities is an essential step in improving the precision and accuracy of static reservoir models and volumetric calculations. This paper demonstrates the quantitative influence of introducing sedimentological information into the reservoir characterization workflow using a simple deterministic workflow. The described incorporation of sedimentological knowledge through facies 3D proportions cubes allows a direct assessment to facies distribution multi-realization scheme and associated uncertainties by applying stochastic simulations.

You do not currently have access to this chapter.

Figures & Tables





Citing Books via

Close Modal

or Create an Account

Close Modal
Close Modal