Skip to Main Content


In both palaeoenvironmental and palaeogeographical studies, Antarctica plays a unique role in our understanding of the history of the Earth. It has maintained a unique geographical position at the South Pole for long periods. As the only unpopulated continent, the absence of political barriers or short-term economic interests has allowed international collaborative science to flourish. Although 98% of its area is covered by ice, the coastal Antarctic region is one of the well-studied regions in the world. The integrity and success of geological studies lies in the fact that exposed outcrops are well preserved in the low-latitude climate. The continuing programme of the Japanese Antarctic Research Expedition focuses on the geology of East Antarctica, especially in the Dronning Maud Land and Enderby Land regions. Enderby Land preserves some of the oldest Archaean rocks on Earth, and the Mesoproterozoic to Palaeozoic history of Dronning Maud Land is extremely important in understanding the formation and dispersion of Rodinia and subsequent assembly of Gondwana. The geological features in this region have great significance in defining the temporal and spatial extension of orogenic belts formed by the collision of proto-continents. Present understanding of the evolution of East Antarctica in terms of global tectonics allows us to visualize how continents have evolved through time and space, and how far back in time the present-day plate-tectonic regime may have operated. Although several fundamental research problems still need to be resolved, the future direction of geoscience research in Antarctica will focus on how the formation and evolution of continents and supercontinents have affected the Earth's environment, a question that has been addressed only in recent years.

You do not currently have access to this chapter.

Figures & Tables





Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal