Skip to Main Content


Neogene-to-Recent deformation is widespread on and adjacent to Australia’s ‘passive’ margins. Elevated historical seismic activity and relatively high levels of Neogene-to-Recent tectonic activity are recognized in the Flinders and Mount Lofty Ranges, the SE Australian Passive Margin, SW Western Australia and the North West Shelf. In all cases the orientation of palaeostresses inferred from Neogene-to-Recent structures is consistent with independent determinations of the orientation of the present-day stress field.

Present-day stress orientations (and neotectonic palaeostress trends) vary across the Australian continent. Plate-scale stress modelling that incorporates the complex nature of the convergent plate boundary of the Indo-Australian Plate (with segments of continent–continent collision, continent–arc collision and subduction) indicates that present-day stress orientations in the Australian continent are consistent with a first-order control by plate-boundary forces. The consistency between the present-day, plate-boundary-sourced stress orientations and the record of deformation deduced from neotectonic structures implicates plate boundary forces in the ongoing intraplate deformation of the Australian continent.

Deformation rates inferred from seismicity and neotectonics (as high as 10−16 s−1) are faster than seismic strain rates in many other ‘stable’ intraplate regions, suggestive of unusually high stress levels imposed on the Australian intraplate environment from plate boundary interactions many thousands of kilometres distant. The spatial overlap of neotectonic structures and zones of concentrated historical seismicity with ancient fault zones and/or regions of enhanced crustal heat flow indicates that patterns of active deformation in Australia are in part, governed, by prior tectonic structuring and are also related to structural and thermal weakening of continental crust. Neogene-to-Recent intraplate deformation within the Australian continent has had profound and under-recognized effects on hydrocarbon occurrence, both by amplifying some hydrocarbon-hosting structures and by inducing leakage from pre-existing traps due to fault reactivation or tilting.

You do not currently have access to this chapter.

Figures & Tables





Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal