Structure and Emplacement of High-Level Magmatic Systems

There are continual rounds of annual conferences, special sessions and other symposia that provide ample opportunity for researchers to convene and discuss igneous processes. However, the origins of laccoliths and sills continue to inspire and confound geologists.
In one sense, this is surprising. After all, don’t we know all we need to know about these rocks by now? As testified by the diverse range of topics covered in this volume, the answer is clearly ‘no’.
This book contains contributions on physical geology, igneous petrology, volcanology, structural geology, crustal mechanics and geophysics that cover the entire gambit of geological processes associated with the shallow emplacement of magma. High-level intrusions in sedimentary basins can also act as hydrocarbon reservoirs and as sources for thermal maturation.
In drawing together a diversity of perspectives on the emplacement of sills, laccoliths and dykes we hope to advance further our understanding of their behaviour.
Large-scale mechanics of fracture-mediated felsic magma intrusion driven by hydraulic inflation and buoyancy pumping
-
Published:January 01, 2008
Abstract
A new fracture-mediated intrusion model resolves the sequence of magma and rock displacements generating a felsic magma system with a lower crustal source, central conduit and shallow sill pluton. Idealized intraplate conditions are assumed, to neglect regional tectonism and to focus on juvenile cracking by magma-intrinsic hydraulic and buoyant loads.
The magma source is conductively heated and develops by endothermic fluid-absent melting in approximately 106 years. The idealized domical thermal anomaly and endothermic heat focusing yield a low aspect ratio source, with outer-porous and inner-permeable partial melt zones. An anatectic core region is unrealized owing to magma segregation....