Skip to Main Content
Book Chapter

The Iberia–Newfoundland continental extensional system (dynamic modelling)

By
Published:
January 01, 2007

Abstract

Plane strain thermo-mechanical finite-element model experiments are used to investigate the effects of frictional–plastic strain softening and inherited weakness on the style of lithospheric extension. The model results are compared with the Newfoundland–Iberia conjugate rifted margins with the goal of understanding the lithospheric properties that controlled their evolution during rifting. Our proposition is that coupling between the plastic–viscous layering, acting together with frictional–plastic strain softening localized on inherited weak heterogeneities, can explain the initial wide rift and distributed rift basins that are later abandoned in favour of a narrow rift in which mantle lithosphere is exhumed to the surface. The models comprise uniform composition viscous and plastic layers in which focused deformation is nucleated on either a single weak ‘seed’ or a statistical white noise distribution of inherited strain. Strain softening of frictional–plastic layers acts as a positive feedback mechanism that creates localized shear zones from the inherited weak heterogeneities. The sensitivity of deformation to the choice of softening parameters and the type of inherited noise is examined in cases where the deeper part of the crust is either weak or strong.

Lithosphere-scale models with a single weak seed exhibit a range of asymmetric and symmetric rifting modes that are mostly determined by the feedback between two primary controls, coupling between the plastic and viscous layers and strain softening. Decreasing and increasing the rifting velocity can change the mode, and asymmetry is strongest in models with low rifting velocities and a strong lower crust. Analysis of equivalent simple-bonded plastic–viscous two-layer models using the minimum rate of dissipation principle demonstrates that the mode selected depends on the division of the dissipation between the layers. Criteria developed on minimizing the total dissipation show how mode selection changes with increasing viscosity, or rifting velocity, from the: asymmetric plug or half-graben (AP) mode; through the symmetric plug or graben (PS) mode, to the distributed pure shear (PS) mode. Numerical models confirm these results.

Models with statistical white-noise-inherited strain have similar modes to those with a single seed. In addition, modes with multiple sets of shear zones develop in the plastic layer for a range of intermediate parameter combinations. We believe that distributed noise in combination with a weak lower crust and slow extension can produce model results in accord with general features of the Newfoundland–Iberia conjugate margins; an initially distributed wide rift mode, followed by a late-stage narrow rift with a significant component of mantle exhumation.

You do not currently have access to this article.

Figures & Tables

Contents

Geological Society, London, Special Publications

Imaging, Mapping and Modelling Continental Lithosphere Extension and Breakup

G. D. Karner
G. D. Karner
ExxonMobil Upstream Research Company, Houston, USA
Search for other works by this author on:
G. Manatschal
G. Manatschal
Université Louis Pasteur, Strasbourg, France
Search for other works by this author on:
L. M. Pinheiro
L. M. Pinheiro
Universidade de Aveiro, Aveiro, Portugal
Search for other works by this author on:
Geological Society of London
Volume
282
ISBN electronic:
9781862395305
Publication date:
January 01, 2007

GeoRef

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal