Imaging, Mapping and Modelling Continental Lithosphere Extension and Breakup

This book summarizes our present understanding of the formation of passive continental margins and their ocean–continent transitions. It outlines the geological, geophysical and petrological observations that characterize extensional systems, and how such observations can guide and constrain dynamic and kinematic models of continental lithosphere extension, breakup and the inception of organized sea-floor spreading. The book focuses on imaging, mapping and modelling lithospheric extensional systems, at both the regional scale using dynamic models to the local scale of individual basins using kinematic models, with an emphasis on capturing the extensional history of the Iberia and Newfoundland margins. The results from a number of other extensional regimes are presented to provide comparisons with the North Atlantic studies; these range from the Tethyan realm and the northern Red Sea to the western and southern Australian margins, the Basin and Range Province, and the Woodlark basin of Papua New Guinea. All of these field studies, combined with lessons learnt from the modelling, are used to address fundamental questions about the extreme deformation of continental lithosphere.
The boundary between continental rifting and sea-floor spreading in the Woodlark Basin, Papua New Guinea
-
Published:January 01, 2007
-
CiteCitation
A. M. Goodliffe, B. Taylor, 2007. "The boundary between continental rifting and sea-floor spreading in the Woodlark Basin, Papua New Guinea", Imaging, Mapping and Modelling Continental Lithosphere Extension and Breakup, G. D. Karner, G. Manatschal, L. M. Pinheiro
Download citation file:
- Share
-
Tools
Abstract
Seismic reflection, bathymetry, acoustic imagery and magnetic data are presented that encompass the boundary between rifting of the Papuan continent and westward propagating sea-floor spreading in the Woodlark Basin. West of the spreading tip, the southern margin is characterized by large fault blocks, which were tilted to the south on north-dipping normal faults during the current rifting phase, and graben further south where previous rifting failed. The northern margin is devoid of large offset normal faults and its subsidence from near sea level requires synrift flow of the lower crust. The margin asymmetry primarily reflects across-strike differences in the...