Mechanisms of Activity and Unrest at Large Calderas

Large caldera collapses represent catastrophic natural events, second only to large meteoritic impacts. In addition, some calderas are densely populated, making the risk extreme, even for moderate eruptions. Understanding caldera mechanisms, unrest and the danger of eruption is therefore a crucial challenge for Earth sciences.
Several key features of caldera behaviour have yet to be fully understood. Through a combination of case studies and theoretical modelling, the following topics are addressed in this volume: the conditions required to produce and to release large volumes of magma erupted during caldera formation; how magmatic feeding systems evolve before and after a caldera has formed; the processes that limit the behaviour of precursors to eruptions; how pre-emptive precursors can be distinguished from those that drive unrest without an eruption; and given that post-collapse eruptions may occur across a wide area, the optimum procedures for designing hazard maps and mitigation strategies.
Unrest in Long Valley Caldera, California, 1978–2004
-
Published:January 01, 2006
Abstract
Long Valley Caldera and the Mono–Inyo Domes volcanic field in eastern California lie in a left-stepping offset along the eastern escarpment of the Sierra Nevada, at the northern end of the Owens Valley and the western margin of the Basin and Range Province. Over the last 4 Ma, this volcanic field has produced multiple volcanic eruptions, including the caldera-forming eruption at 760 000 a BP and the recent Mono–Inyo Domes eruptions 500–660 a BP and 250 a BP. Beginning in the late 1970s, the caldera entered a sustained period of unrest that persisted through the end of the...