Skip to Main Content
Book Chapter

Models of faults and fluid flow

By
Published:
January 01, 2006

Abstract

Modelling of sediment compaction requires that the rate limiting processes are understood. The compaction of uncemented sediments at relatively shallow burial depths should be modelled as a function of effective stress following soil mechanical principles and using experimental compaction data for calibration. In siliceous rocks chemical compaction is dominant at depths greater than 2–3 km (80–100°C). Chemical compaction should be modelled as a function of the temperature history and the mineralogical and textural composition of the sediments. The rate of chemical compaction for siliceous sediments is to a large extent a function of the quartz cementation, which is an exponenţial function of temperature, while the effective stress plays a minor role. In the case of carbonate sediments the kinetics of precipitation of cement is much faster and the effective stress is more important than temperature.

The magnitude and distribution of effective in situ stresses is a complex function of external tectonic stresses, gravitaţional forces and fluid pressures. Sediments undergo mechanical compaction when subjected to high effective stress and are much more compressible than basement rocks. Chemical compaction also results in a reduction in rock volume and this has a strong feedback on the in situ stresses. If the horizontal stress is greater than the vertical stress, both mechanical compaction and chemical compaction will also occur in the horizontal direction, thus relaxing in situ stresses unless there is significant basin shortening. Calculations show that relatively large in situ stress anomalies (10 MPa) may be relaxed in 5–10 ka by chemical compaction during basin subsidence. Chemical compaction may also continue during uplift; it is fundamentally different from mechanical compaction and must be modelled separately.

You do not currently have access to this article.

Figures & Tables

Contents

Geological Society, London, Special Publications

Analogue and Numerical Modelling of Crustal-Scale Processes

S. J. H. Buiter
S. J. H. Buiter
Geological Survey of Norway, Trondheim, Norway
Search for other works by this author on:
G. Schreurs
G. Schreurs
University of Bern, Switzerland
Search for other works by this author on:
Geological Society of London
Volume
253
ISBN electronic:
9781862395015
Publication date:
January 01, 2006

GeoRef

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal