Skip to Main Content
Book Chapter

Rifting through a heterogeneous crust: Insights from analogue models and application to the Gulf of Corinth

By
L. Mattioni
L. Mattioni
Institut Français du Petrole, Rueil Malmaison, France
Search for other works by this author on:
L. Le Pourhiet
L. Le Pourhiet
Institut Français du Petrole, Rueil Malmaison, France
Search for other works by this author on:
I. Moretti
I. Moretti
Institut Français du Petrole, Rueil Malmaison, France
Search for other works by this author on:
Published:
January 01, 2006

Abstract

We used analogue models to study the fault evolution produced by extension through a heterogeneous crust. In the experiments, the heterogeneous crust consisted of a gently dipping silicone layer surrounded by brittle material. The viscous silicone level simulates a weak, upper crustal nappe stack that formed during a previous phase of shortening. X-ray scanner facilities allowed us to acquire 3D images of the experimental models at regular time invervals and hence to study the fault pattern development and the location of the main depocenters during rifting. The experimental results show that the inherited weak nappe stack acts as a décollement and localizes deformation. In the early stages of extension a system of conjugate high-angle normal faults initiates close to the upper tip of the gently dipping silicone layer near the free surface and propagates upwards, resulting in an initial symmetrical graben configuration. Further extension results in (1) a progressive asymmetry of the rifted zone, due to migration of its right margin down the nappe, (2) a shift of the main depocentre downward along the décollement, and (3) the simultaneous activity of several normal faults within the rifted zone. When the pre-existing silicone layer is oblique to the extension, the normal faults develop in an en echelon array, with a strike intermediate between the azimuth of the gently dipping silicone layer and the extension direction. The experiments also show how rheological differences between areas with potential intracrustal weak layers and adjacent domains without décollement level can lead to significant differences in fault pattern, dimension and orientation of the rifted zone. Complete asymmetry of a rift and switches in fault dip direction between adjacent domains can be explained by the presence of pre-existing upper crustal heterogeneities.

You do not currently have access to this article.

Figures & Tables

Contents

Geological Society, London, Special Publications

Analogue and Numerical Modelling of Crustal-Scale Processes

S. J. H. Buiter
S. J. H. Buiter
Geological Survey of Norway, Trondheim, Norway
Search for other works by this author on:
G. Schreurs
G. Schreurs
University of Bern, Switzerland
Search for other works by this author on:
Geological Society of London
Volume
253
ISBN electronic:
9781862395015
Publication date:
January 01, 2006

GeoRef

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal