Skip to Main Content
Book Chapter

Relative importance of trenchward upper plate motion and friction along the plate interface for the topographic evolution of subduction-related mountain belts

By
Andrea Hampel
Andrea Hampel
Search for other works by this author on:
Adrian Pfiffner
Adrian Pfiffner
Search for other works by this author on:
Published:
January 01, 2006

Abstract

We present finite-element models that investigate the relative importance of both trenchward motion of the upper plate and interplate coupling for the development of topography at convergent margins. Commonly, the role of a trenchward moving continental plate for the growth of topography is neglected in both modelling and field studies. Instead, forces exerted by the downgoing plate on the continental plate as well as interplate coupling are thought to be responsible for the deformation of the upper plate. Our model set-up includes an oceanic plate, which is in contact with a continental plate along a frictional plate interface and driven by slab pull. Both lithospheres have an elasto-visco-plastic rheology. The models demónstrate that friction along the plate interface can only lead to a high topography if the upper plate is moving toward the trench. Without such a trenchward advance, no high topography is generated, as the upper plate subsides owing to the drag exerted by the subducting plate. Increasing the coefficient of friction only amplifies the drag and increases the amount of subsidence. Our findings imply that trenchward motion of the continental plate plays a key role for the development of mountain beits at convergent margins; subduction of an oceanic plate even with high interplate coupling cannot explain the formation of Andean-type orogens.

You do not currently have access to this article.

Figures & Tables

Contents

Geological Society, London, Special Publications

Analogue and Numerical Modelling of Crustal-Scale Processes

S. J. H. Buiter
S. J. H. Buiter
Geological Survey of Norway, Trondheim, Norway
Search for other works by this author on:
G. Schreurs
G. Schreurs
University of Bern, Switzerland
Search for other works by this author on:
Geological Society of London
Volume
253
ISBN electronic:
9781862395015
Publication date:
January 01, 2006

GeoRef

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal