Skip to Main Content
Book Chapter

Environmental impact of the nuclear fuel cycle

By
Rodney C. Ewing
Rodney C. Ewing
Departments of Geological Sciences, Materials Science & Engineering, and Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA rodewing@umich.edu
Search for other works by this author on:
Published:
January 01, 2004

Abstract

Nuclear power provides approximately 17% of the world’s electricity, which is equivalent to a reduction in carbon emissions of ∼0.5 Gt of C/year. This is a modest contribution to the reduction of global carbon emissions, ∼6.5 Gt C/year. Most analyses suggest that in order to have a significant and timely impact on carbon emissions, carbonfree sources, such as nuclear power, would have to expand total energy production by a factor of three to ten by 2050. A three-fold increase in nuclear power capacity would result in a projected reduction in carbon emissions of 1 to 2 Gt C/year, depending on the type of carbon-based energy source that is displaced. This paper reviews the impact of an expansion of this scale on the generation of nuclear waste and fissile material that might be diverted to the production of nuclear weapons. There are three types of nuclear fuel cycles that might be utilized for the increased production of energy: open, closed, or a symbiotic combination of different reactor types (such as thermal and fast neutron reactors). Within each cycle, the volume and composition of the nuclear waste and fissile material depend on the type of nuclear fuel, the amount of burn-up, the extent of radionuclide separation during reprocessing, and the types of material used to immobilize different radionuclides. This chapter is a discussion of the relation between the different types of fuel cycles and their environmental impact.

You do not currently have access to this article.

Figures & Tables

Contents

Geological Society, London, Special Publications

Energy, Waste and the Environment: a Geochemical Perspective

R. Gieré
R. Gieré
Universität Freiburg, Germany
Search for other works by this author on:
P. Stille
P. Stille
ULP-École et Observatoire des Sciences de la Terre-CNRS, Strasbourg, France
Search for other works by this author on:
Geological Society of London
Volume
236
ISBN electronic:
9781862394841
Publication date:
January 01, 2004

GeoRef

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal