Skip to Main Content
Book Chapter

Anisotropy of magnetic susceptibility (AMS): magnetic petrofabrics of deformed rocks

By
Graham J. Borradaile
Graham J. Borradaile
Geology Department, Lakehead University, Thunder Bay ON Canada P7B 5E1 e-mail: borradaile@lakeheadu.ca
Search for other works by this author on:
Mike Jackson
Mike Jackson
Institute for Rock Magnetism, Winchell School of Earth Sciences, University of Minnesota, 100 Union St SE, Minneapolis, MN 55455, USA e-mail: irm@umn.edu
Search for other works by this author on:
Published:
January 01, 2004

Abstract

For 40 years magnetic anisotropy has provided successful geological interpretations of magnetic ellipsoid orientations; in contrast the interpretation of anisotropy magnitudes is far more convoluted. This is due to complexities at various levels within rocks, including different physical magnetic responses of different minerals, grain-scale magnetic anisotropy, the anisotropy of interacting ensembles, the mineralogical constitution of rocks and the processes and mechanisms that align minerals in nature. The chief factors determining the magnetic fabrics of tectonized rocks include: mineral-physics properties, crystal symmetry, mineral-abundances, tectonic symmetry and crystal orientation-distribution, strain or stress, kinematic history and certain tectono-metamorphic processes (e.g. diffusion, crystal plasticity, dynamic recrystallization, particulate flow, neomineralization). AMS ultimately provides an integrated record of some combination of these factors. Subfabrics due to distinct processes or events may be expressed in different mineral and/or grain-size fractions, and are superposed in the conventionally observed AMS. Their discrimination may be achieved by various laboratory techniques such as magnetization and torque measurements in weak and strong applied fields, anisotropy of ARM and IRM, gyroremanence, Rayleigh magnetization, chemical leaching. However, under limited circumstances, statistical approaches such as differential analysis, tensor standardization, symmetry of confidence regions for the principal axes may partly isolate different subfabric orientations.

You do not currently have access to this article.

Figures & Tables

Contents

Geological Society, London, Special Publications

Magnetic Fabric: Methods and Applications

F. Martín-Hernández
F. Martín-Hernández
Faculty of Geosciences, Utrecht University, The Netherlands
Search for other works by this author on:
C. M. Lüneburg
C. M. Lüneburg
Department of Geology and Geophysics, University of New Orleans, USA
Search for other works by this author on:
C. Aubourg
C. Aubourg
Laboratoire de Tectonique, Université de Cergy-Pontoise, France
Search for other works by this author on:
M. Jackson
M. Jackson
Institute for Rock Magnetism, University of Minnesota, USA
Search for other works by this author on:
Geological Society of London
Volume
238
ISBN electronic:
9781862394865
Publication date:
January 01, 2004

GeoRef

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal