Skip to Main Content

Abstract

The effects of dynamic recrystallization on the deformation mechanisms and rheology of olivine aggregates in the laboratory and the lithosphere are reviewed in this paper. The low-strain rheology of olivine is well documented; however, deformation in the lithosphere often involves large strains. Large strain experiments show that recrystallization can result in both hardening and softening during deformation. Moderate strain softening in experimental shear and torsion can be explained by the operation of dislocation-accommodated grain boundary sliding in bands of fine recrystallized grains.

Data on the temperature dependence of recrystallized grain size are needed to extrapolate the effects of dynamic recrystallization to the lithosphere. Theories of dynamic recrystallization suggest that grain size is strongly stress dependent and moderately temperature dependent. A re-analysis of experimental grain size data indicates that the recrystallized grain size is temperature independent for olivine aggregates with low water content (<300 ppm H/Si).

Rheological regime maps have been constructed for the lithospheric mantle. The maps suggest that grain size sensitive power law creep, involving both grain boundary sliding and dislocation creep, will produce strong strain softening, greater than found so far in experimental studies, in dry and wet lithosphere shear zones.

You do not currently have access to this chapter.

Figures & Tables

Contents

GeoRef

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal