Skip to Main Content
Book Chapter

On the neutron absorption properties of basic and ultrabasic rocks: the significance of minor and trace elements

By
P. K. Harvey
P. K. Harvey
Department of Geology, University of Leicester, Leicester, LE1 7RH, UKpkh@leicester.ac.uk
Search for other works by this author on:
T. S. Brewer
T. S. Brewer
Department of Geology, University of Leicester, Leicester, LE1 7RH, UKpkh@leicester.ac.uk
Search for other works by this author on:
Published:
January 01, 2005

Abstract

The neutron absorption macroscopic cross-section, Σ, is measured routinely by neutron porosity tools and, although rarely presented as a logging curve in its own right, is used indirectly for the estimation of (neutron) porosity. One of the reasons that this primary measurement is not often employed directly in petrophysical analysis is the difficulty of interpretation. In particular, little is known about the range of Σ values for common lithologies, or exactly what information the measurement is providing.

In this contribution we demonstrate that excellent estimates of Σ can be calculated, provided that the chemistry of a sample is known in sufficient detail. When applied to a range of geochemical reference materials, it becomes apparent that the minor and trace elements present may have a profound effect on the Σ value of a sample, and, in turn, on the interpretation of neutron porosity measurements. Using this approach we present Σ data for basaltic and ultrabasic rocks, and model the change in Σ with alteration.

Alteration is considered in these models as an increase in alteration minerals (which are mainly clays, but also carbonates and zeolites in basic rock alteration) and changes in the trace-element chemistry of the rocks. Of the trace elements, boron and some of the rare-earth elements are of particular importance. Modelling the variation in Σ with these mineralogical and compositional changes indicates that increases in boron are the most important of these factors in increasing Σ; this is enhanced by the alteration, particularly to clay phases, which generally accompanies an increase in boron.

These models suggest that a Σ log should be able to act as a proxy for alteration trends in basic and ultrabasic crystalline rocks, and a quantitative model for such alteration is described.

You do not currently have access to this article.
Don't already have an account? Register

Figures & Tables

Contents

Geological Society, London, Special Publications

Petrophysical Properties of Crystalline Rocks

P. K. Harvey
P. K. Harvey
University of Leicester, UK
Search for other works by this author on:
T. S. Brewer
T. S. Brewer
University of Leicester, UK
Search for other works by this author on:
P. A. Pezard
P. A. Pezard
Université de Montpellier II, France
Search for other works by this author on:
V. A. Petrov
V. A. Petrov
IGEM, Russian Academy of Sciences, Russia
Search for other works by this author on:
Geological Society of London
Volume
240
ISBN electronic:
9781862394889
Publication date:
January 01, 2005

GeoRef

References

Related

A comprehensive resource of eBooks for researchers in the Earth Sciences

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Subscribe Now