Skip to Main Content
Book Chapter

New 40Ar/39Ar ages and geochemistry of late Carboniferous–early Permian lamprophyres and related volcanic rocks in the Saxothuringian Zone of the Variscan Orogen (Germany)

By
V. von Seckendorff
V. von Seckendorff
Mineralogisches Institut, Universität Würzburg, Am Hubland, D-97074 Würzburg, GermanyPresent address: Lehrstuhl für Mineralogie, Schloβgarten 5a, D-91054 Erlangen, Germany (e-mail: vvs@geol.uni-erlangen.de and volker.von_seckendorff@mail.uni-wuerzburg.de)
Search for other works by this author on:
M. J. Timmerman
M. J. Timmerman
School of Earth Sciences, Leeds University, Leeds LS2 9JT, UKPresent address: Universität Potsdam, Institut für Geowissenschaften, Postfach 60 15 53, D-14415 Potsdam, Germany
Search for other works by this author on:
W. Kramer
W. Kramer
GeoForschungsZentrum Potsdam, Telegrafenberg, D-14473 Potsdam, Germany
Search for other works by this author on:
P. Wrobel
P. Wrobel
Mineralogisches Institut, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
Search for other works by this author on:
Published:
January 01, 2004

Abstract

40Ar/39Ar step-heating dating of mineral separates from a series of lamprophyre dykes in the Saxothuringian Zone of the Variscan Orogen yielded Viséan-Namurian (334–323 Ma) and Stephanian–early Permian (297–295 Ma) crystallization ages indicating magma generation over a period of 30 Ma. In many cases, dyke emplacement was controlled by faults. Many are composite or show evidence for mingling of primitive and evolved magmas, and, to a certain degree, contamination with crustal melts. The high MgO (6–7 wt%), Ni (75–270 ppm) and Cr (140–1250 ppm) contents and mafic phenocryst assemblage are evidence for derivation from a mantle source. Kersantites and minettes have similar incompatible trace-element and rare earth element (REE) patterns (light REE (LREE)- and medium REE (MREE)-enriched and heavy REE (HREE)-depleted) and high, but varying Th, Zr and Hf contents. Positive Ni v. Mg# (FeO=FeOtot) correlations suggest early fractionation of olivine, and the general absence of negative Eu anomalies makes feldspar fractionation improbable. For the lamprophyres of the Spessart, the variations of Ba, Rb and TiO2 indicate phlogopite fractionation. Negative Ta, Nb and Ti anomalies are common, and may be an artefact of the high large ion lithophile element (LILE) and REE contents, but are more likely to reflect derivation from a mantle source that was metasomatized during a previous (Devonian?) subduction event. The generation of the parent melts was possibly triggered by partial melting of metasomatized mantle due to lithosphere detachment, removal and replacement of metasomatized lithospheric mantle by upwelling hot asthenospheric mantle. Compared to the spessartites, the minettes and kersantites appear to have originated by partial melting of deeper-mantle sources. Lithospheric mantle detachment may have caused post-collisional Namurian uplift and cooling of the crust, and facilitated emplacement of lamprophyre dykes along fault zones at high crustal levels.

You do not currently have access to this article.
Don't already have an account? Register

Figures & Tables

Contents

Geological Society, London, Special Publications

Permo-Carboniferous Magmatism and Rifting in Europe

M. Wilson
M. Wilson
Leeds University, UK
Search for other works by this author on:
E.-R. Neumann
E.-R. Neumann
University of Oslo, Norway
Search for other works by this author on:
G. R. Davies
G. R. Davies
Vrije University, The Netherlands
Search for other works by this author on:
M. J. Timmerman
M. J. Timmerman
Universität Potsdam, Germany
Search for other works by this author on:
M. Heeremans
M. Heeremans
University of Oslo, Norway
Search for other works by this author on:
B. T. Larsen
B. T. Larsen
Norsk Hydro ASA/Saga Petroleum ASA, Norway
Search for other works by this author on:
Geological Society of London
Volume
223
ISBN electronic:
9781862394711
Publication date:
January 01, 2004

GeoRef

References

Related

A comprehensive resource of eBooks for researchers in the Earth Sciences

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Subscribe Now