Skip to Main Content
Book Chapter

Experimental constraints on volatile abundances in arc magmas and their implications for degassing processes

By
B. Scaillet
B. Scaillet
ISTO-CNRS, UMR 6113, 1A rue de la Férollerie, 45071, Orleans Cedex 02, France.
Search for other works by this author on:
M. Pichavant
M. Pichavant
ISTO-CNRS, UMR 6113, 1A rue de la Férollerie, 45071, Orleans Cedex 02, France.
Search for other works by this author on:
Published:
January 01, 2003

Abstract

Recent phase equilibrium studies, combined with analytical and petrological data, provide rigorous constraints on the pre-eruptive P-T-fH20-fO2-fS2-fCO2 conditions of silicic to mafic arc magmas. Pre-eruptive melts show a broad negative correlation between temperature and melt H2O contents. Pre-eruptive melt S contents cluster around 100 ppm in residual rhyolitic liquids of silicic to andesitic magmas, and range up to 5000 ppm in more mafic ones. For the entire compositional spectrum, melt sulphur contents are almost independent of prevailing fO2. In contrast, they are positively correlated to fS2, in agreement with experimental observations. Using these intensive constraints, the composition of coexisting fluid phases has been modelled through a MRK equation of state. Pre-eruptive fluids in silicic to andesitic magmas have XH2O (mole fraction of H2O) in the range 0.65-0.95.XH2O decreases as pressure increases, whereas XCO2 increases up to 0.2-0.3. Pre-eruptive fluids in hydrous mafic arc magmas, such as high-alumina basalts, generally have similar mole fractions of H2O and CO2 at mid-crustal levels, with XH2O increasing only for magmas stored at shallow levels in the crust (<1 kbar). The sulphur content of the fluid phase ranges from 0.12 up to 6.4 wt% in both mafic and silicic magmas. For silicic magmas coexisting with 1-5 wt% fluid, this implies that more than 90% of the melt+fluid mass of sulphur is stored in the fluid. Calculated partition coefficients of S between fluid and melt range from 17 up to 467 in silicic to andesitic magmas, tending to be lower at low fO2, although exceptions to this trend exist. For mafic compositions, the sulphur partition coefficient is constant at around 20. The composition of both melt and coexisting fluid phases under pre-eruptive conditions shows marked differences. For all compositions, pre-eruptive fluids have higher C/S and lower H/C atomic ratios than coexisting melts. Comparison between volcanic gas and pre-eruptive fluid compositions shows good agreement in the high temperature range. However, to reproduce faithfully the compositional field delineated by volcanic gases, silicic to andesitic arc magmas must be fluid-saturated under pre-eruptive conditions, with fluid amounts of at least 1 wt%, whereas mafic compositions require lower amounts of fluid, in the range 0.1-1 wt%. Nevertheless, volcanic gases colder than 700 °C are generally too H2O-rich and S-poor to have been in equilibrium with silicic to andesitic magmas under pre-eruptive conditions, which suggests that such gases probably contain a substantial contribution from meteoric or hydrothermal water.

You do not currently have access to this article.
Don't already have an account? Register

Figures & Tables

Contents

Geological Society, London, Special Publications

Volcanic Degassing

C. Oppenheimer
C. Oppenheimer
Search for other works by this author on:
D. M. Pyle
D. M. Pyle
Search for other works by this author on:
J. Barclay
J. Barclay
Search for other works by this author on:
Geological Society of London
Volume
213
ISBN electronic:
9781862394612
Publication date:
January 01, 2003

GeoRef

References

Related

A comprehensive resource of eBooks for researchers in the Earth Sciences

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Subscribe Now