Skip to Main Content
Book Chapter

Phanerozoic strike-slip faulting in the continental interior platform of the United States: examples from the Laramide Orogen, Midcontinent, and Ancestral Rocky Mountains

By
S. Marshak
S. Marshak
1
Department of Geology, University of Illinois 1301 W Green Street, Urbana, Illinois 61801, USA
Search for other works by this author on:
W. J. Nelson
W. J. Nelson
2
Illinois State Geological Survey 615 E Peabody Drive, Champaign, Illinois 61820, USA
Search for other works by this author on:
J. H. McBride
J. H. McBride
3
Department of Geology, Brigham Young University P.O. Box 24606, Provo, Utah 84602, USA
Search for other works by this author on:
Published:
January 01, 2003

Abstract

The continental interior platform of the United States is that part of the North American craton where a thin veneer of Phanerozoic strata covers Precambrian crystalline basement. N- to NE-trending and W- to NW-trending fault zones, formed initially by Proterozoic/Cambrian rifting, break the crust of the platform into rectilinear blocks. These zones were reactivated during the Phanerozoic, most notably in the late Palaeozoic Ancestral Rockies event and the Mesozoic-Cenozoic Laramide orogeny — some remain active today. Dip-slip reactivation can be readily recognized in cross section by offset stratigraphic horizons and monoclinal fault-propagation folds. Strike-slip displacement is hard to document because of poor exposure. Though offset palaeochannels, horizontal slip lineations, and strain at fault bends locally demonstrate strike-slip offset, most reports of strike-slip movements for interior-platform faults are based on occurrence of map-view belts of en echelon faults and anticlines. Each belt overlies a basement-penetrating master fault, which typically splays upwards into a flower structure. In general, both strike-slip and dip-slip components of displacement occur in the same fault zone, so some belts of en echelon structures occur on the flanks of monoclinal folds. Thus, strike-slip displacement represents the lateral component of oblique fault reactivation; dip-slip and strike-slip components are the same order of magnitude (tens of metres to tens of kilometres). Effectively, faults with strike-slip components of displacement act as transfers accommodating jostling of rectilinear crustal blocks. In this context, the sense of slip on an individual strike-slip fault depends on block geometry, not necessarily on the trajectory of regional σ1. Strike-slip faulting in the North American interior differs markedly from that of southern and central Eurasia, possibly because of a contrast in lithosphere strength. Weak Eurasia strained significantly during the Alpine-Himalayan collision, forcing crustal blocks to undergo significant lateral escape. The strong North American craton strained relatively little during collisional-convergent orogeny, so crustal blocks underwent relatively small displacements.

You do not currently have access to this article.

Figures & Tables

Contents

Geological Society, London, Special Publications

Intraplate Strike-Slip Deformation Belts

F. Storti
F. Storti
Università degli Studi “Roma Tre”, Rome, Italy
Search for other works by this author on:
R. E. Holdsworth
R. E. Holdsworth
Durham University, Durham, UK
Search for other works by this author on:
F. Salvini
F. Salvini
Università degli Studi “Roma Tre”, Rome, Italy
Search for other works by this author on:
Geological Society of London
Volume
210
ISBN electronic:
9781862394582
Publication date:
January 01, 2003

GeoRef

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal