Skip to Main Content
Book Chapter

Diffusion-creep modelling of fibrous pressure shadows II: influence of inclusion size and interface roughness

By
J. R. Berton
J. R. Berton
Department of Earth & Planetary Sciences, Macquarie University, NSW 2109, Australia
Search for other works by this author on:
D. W. Durney
D. W. Durney
Department of Earth & Planetary Sciences, Macquarie University, NSW 2109, Australia
Search for other works by this author on:
J. Wheeler
J. Wheeler
Department of Earth & Ocean Sciences, Liverpool University, Liverpool L69 3GP, UK
Search for other works by this author on:
Published:
January 01, 2011

Abstract

This paper extends previous work by us to gain a fuller appreciation of the physical factors that affect polycrystal diffusion-creep simulations of fibrous pressure-shadow growth around a pyrite inclusion. The earlier work dealt with the effect of diffusion ratio or diffusional conductance of the inclusion/matrix interface. The new work also examines the effects of inclusion geometry: a smaller inclusion of similar smoothness to the original, a regularly serrated inclusion the same size as the original and a coarse irregular inclusion of the same size. The results show: (1) significant enhancement of fibrous pressure-shadow growth and change of matrix strain pattern with decreased inclusion size, similar to an increase in diffusion ratio; (2) approach towards a maximum fibrous pressure-shadow growth at high diffusion ratios in the small-pyrite model; (3) little influence of the model serrations; (4) significant sliding on the interface at low diffusion ratios in all of the models; and (5) enhanced sliding in the irregular-pyrite model at low diffusion ratios. The results are qualitatively consistent with diffusion creep of a single grain interacting with a deforming medium. They demonstrate factors that may influence development of the natural structures under similar conditions in rocks.

You do not currently have access to this article.
Don't already have an account? Register

Figures & Tables

Contents

Geological Society, London, Special Publications

Deformation Mechanisms, Rheology and Tectonics: Microstructures, Mechanics and Anisotropy

David J. Prior
David J. Prior
University of Otago, New Zealand
Search for other works by this author on:
Ernest H. Rutter
Ernest H. Rutter
University of Manchester, UK
Search for other works by this author on:
Daniel J. Tatham
Daniel J. Tatham
University of Liverpool, UK
Search for other works by this author on:
Geological Society of London
Volume
360
ISBN electronic:
9781862394483
Publication date:
January 01, 2011

GeoRef

References

Related

A comprehensive resource of eBooks for researchers in the Earth Sciences

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal