Skip to Main Content
Book Chapter

Lattice Preferred Orientations and Anisotropy

By
Published:
January 01, 2011

Abstract

For the past two decades geodetic measurements have quantified surface displacement fields for the continents, illustrating a general complexity. However, the linkage of geodetically defined displacements in the continents to mantle flow and plate tectonics demands understanding of ductile deformations in the middle and lower continental crust. Advances in seismic anisotropy studies are beginning to allow such work, especially in the Himalaya and Tibet, using passive seismological experiments (e.g. teleseismic receiver functions and records from local earthquakes). Although there is general agreement that measured seismic anisotropy in the middle and lower crust reflects bulk mineral alignment (i.e. crystallographic preferred orientation, CPO), there is a need to calibrate the seismic response to deformation structures and their kinematics. Here, we take on this challenge by deducing the seismic properties of typical mid- and lower-crustal rocks that have experienced ductile deformation through quantitative measures of CPO in samples from appropriate outcrops. The effective database of CPO and hence seismic properties can be expanded by a modelling approach that utilizes ‘rock recipes’ derived from the as-measured individual mineral CPOs combined in varying modal proportions. In addition, different deformation fabrics may be diagnostic of specific deformation kinematics that can serve to constrain interpretations of seismic anisotropy data from the continental crust. Thus, the use of ‘fabric recipes’ based on subsets of individual rock fabric CPO allows the effect of different fabrics (e.g. foliations) to be investigated and interpreted from their seismic response. A key issue is the possible discrimination between continental crustal deformation models with strongly localized simple-shear (ductile fault) fabrics from more distributed (‘pure-shear’) crustal flow. The results of our combined rock and fabric-recipe modelling suggest that the seismic properties of the middle and lower crust depend on deformation state and orientation as well as composition, while reliable interpretation of seismic survey data should incorporate as many seismic properties as possible.

You do not currently have access to this article.

Figures & Tables

Contents

Geological Society, London, Special Publications

Deformation Mechanisms, Rheology and Tectonics: Microstructures, Mechanics and Anisotropy

David J. Prior
David J. Prior
University of Otago, New Zealand
Search for other works by this author on:
Ernest H. Rutter
Ernest H. Rutter
University of Manchester, UK
Search for other works by this author on:
Daniel J. Tatham
Daniel J. Tatham
University of Liverpool, UK
Search for other works by this author on:
Geological Society of London
Volume
360
ISBN electronic:
9781862394483
Publication date:
January 01, 2011

GeoRef

References

Related

Citing Books via

A comprehensive resource of eBooks for researchers in the Earth Sciences

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal