Skip to Main Content
Skip Nav Destination


This special publication of the Geological Society of London presents recent advances in the study of deformation mechanisms and rheology and their application to tectonics. We have subdivided the papers into two themed sections.

The inference of deformation processes, conditions and rheology at depth in active tectonic settings is of fundamental importance to a quantitative geodynamic understanding of deformation in the Earth. The papers in the section on Lattice Preferred Orientations and Anisotropy are extremely important as they underpin our ability to make such geodynamic interpretations from global seismic data. These papers reflect the growing emphasis on the determination of elastic properties from microstructures, from which acoustic properties can be computed for comparison with in situ seismic measurements. The component of the microstructure that receives most attention is the lattice preferred orientation (LPO), otherwise known as the crystallographic preferred orientation (CPO) or the texture (the term used in material science and metallurgy). The papers include new LPO measurements (made almost exclusively by the relatively new technique of electron backscatter diffraction or EBSD), exploration of the significance of these data for seismic properties of both the crust and the mantle and modelling of LPO generation. An invited contribution from Mainprice and colleagues introduces a computational toolbox to help researchers calculate anisotropic physical properties from their LPO data.

Rock microstructures evolve during deformation and rock physical properties, including both elastic properties and creep rheology, evolve with the microstructures as a function of strain and time. The section on Microstructures, Mechanisms and Rheology

You do not currently have access to this chapter.

Figures & Tables





Citing Books via

Close Modal

or Create an Account

Close Modal
Close Modal