Skip to Main Content
Skip Nav Destination

Twelve stratigraphic intervals originally defined in the Eagle Ford of south Texas were mapped across the San Marcos arch into the Maness Shale, Woodbine, and Eagle Ford of east Texas. The maps are based on well log correlations of 1729 wells across 22 counties in south and east Texas using biostratigraphic, geochemical, and lithologic data from 99 wells as seed points for the correlations. These mapped intervals were tied to a regional chronostratigraphic framework developed using data from the outcrops of west, central, and north Texas and cores from the subsurface of south and east Texas. Seven regional depositional episodes were identified across the Texas shelf for the Woodbine and Eagle Ford Groups based on the isopach maps, outcrop data, and paleoenvironmental interpretations. The clay-rich Maness Shale was deposited during the Early Cenomanian in east Texas and northern south Texas where it correlates to the base of the Lower Eagle Ford. After a relative fall in sea level, east Texas was dominated by the thick siliciclastics of the Woodbine, whereas in south Texas deposition of the organic-rich EGFD100 marls began during the subsequent transgression. A shift in depositional style to the limestones and organic-rich shales of the Eagle Ford occurred in east Texas during the Middle Cenomanian produced by the continued rise in sea level, correlating to the EGFD200 marls of south Texas and the carbonates of the Lozier Canyon Member (restricted) of the Eagle Ford Group in west Texas. During the EGFD300 interval deposition transitioned to the organic-rich marls and limestones of the Lozier Canyon and Antonio Creek Members of the Eagle Ford Group in west Texas and the Templeton delta became active in northern east Texas. Erosion along the Sabine uplift shifted the focus of deposition in east Texas southward to the Harris delta and deposited the “clay wedge” of the EGFD400 in northern south Texas. Although the lower part of the EGFD500 episode was deposited during OAE2, it is characterized by low total organic carbon (TOC) due to the presence of oxygenated bottom waters, and the Cenomanian–Turonian boundary sea-level high produced a regional hiatus. Deposition recommenced on much of the Texas shelf during the Late Turonian EGFD600 interval with the Sub-Clarksville delta of east Texas and the carbonate-rich Langtry of south Texas and eastern west Texas. Bottom waters became oxygenated at approximately 90 Ma, initiating the transition from the Eagle Ford to the Austin Chalk.

You do not currently have access to this chapter.

Figures & Tables




Citing Books via

Close Modal

or Create an Account

Close Modal
Close Modal