Skip to Main Content
Book Chapter

Onshore Basins and Hydrocarbons in Colombia

Published:
January 01, 2015

Abstract

Previous studies along the Andean subduction zones of South America have shown that forearc basins can develop over shallow-dipping the subduction zone dips horizontally or up to 15°, and that these shallow-dipping subduction zones can alternate with more steeply dipping (>30°) subduction zones over distances of 400–1500 km (249–932 mi). This study describes the Cenozoic structural and depositional history of the Lower Magdalena Basin (LMB)—an Oligocene to Recent forearc basin covering an area of 42,000 km2 (16,216 mi2) and overlying a zone of shallow subduction (the depth to the top of the Caribbean slab ranges from 30 km to 90 km [19 to 56 mi] beneath the LMB). Using 7000 km (4350 mi) of two-dimensional (2-D) seismic reflection lines tied to 33 wells, we describe the initial Oligocene subsidence of the forearc basin along a radial array of 70°- to 110°-striking normal faults that remained active until the early Miocene. During this period, the LMB was underfilled by 1–3 seconds two-way-time (TWT) (1500 m [4921 ft]) of shallow-marine and deep-marine facies. During middle Miocene the LMB remained underfilled with marine sediments deposited in water depths of 200–2600 m (656–8530 ft). An angular unconformity spanning the interval of 11–7 Ma marks a shortening and uplift affecting the Sinu accretionary prism west of the LMB that became emergent to form a prominent forearc high along the western edge of the LMB. The regional structure of the LMB is a broad syncline that folds all units older than early Miocene and produces an asymmetrical shape—in profile—with the western edge of the LMB (against the Sinu accretionary prism), steeper than the eastern edge of the LMB. After the late Miocene–Pliocene, the forearc high continued to elevate and separate the LMB from the outer Sinu accretionary prism. During this period, the LMB overfilled with terrigenous sediments of shallow marine facies that spilled offshore into the Caribbean Sea to form the proto-delta of the Magdalena Fan; these spilled sediments led to rapid tectonic accretion and growth of the offshore Sinu accretionary prism from 5 Ma to present. During the period of Oligocene to middle Miocene, different structural styles and subduction-related magmatic intrusions suggest that the Caribbean slab was subducting at an angle greater than 30° with a discontinuous volcanic arc. The decrease in the dip of the Caribbean slab to its modern dip angles of 4–8° occurred during the late Miocene and is interpreted as the entry of thicker Caribbean oceanic plateau crust into the subduction zone. Comparison of the segmented dip of the 400-km-long (249-mi-long) subducting Caribbean slab is consistent with the upper, 220-km-long (137-mi-long) shallow-dipping part subducting at rates of 2 cm/yr (0.78 in/yr) from 11 Ma (late middle Miocene) to Recent. We propose that this change from the steeper to shallower-dipping slab in the middle Miocene led to (1) increasing elevation of the forearc high of the Sinu prism along the eastern edge of the LMB; (2) the regional synclinal structure of the LMB in profile; and (3) the possible elevation of the entire LMB after 11 Ma as it changed from underfilled, deep-water marine environments to overfilled, shallow-water marine and fluvial environments.

You do not currently have access to this article.

Figures & Tables

Contents

AAPG Memoir

Petroleum Geology and Potential of the Colombian Caribbean Margin

Claudio Bartolini
Claudio Bartolini
Search for other works by this author on:
Paul Mann
Paul Mann
Search for other works by this author on:
American Association of Petroleum Geologists
Volume
108
ISBN electronic:
9781629812724
Publication date:
January 01, 2015

GeoRef

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal