Skip to Main Content
1Manuscript received, April 16, 1972. Research sponsored by the U.S. Atomic Energy Commission under contract with the Union Carbide Corporation.
2Health Physics Division, Oak Ridge National Laboratory.


Disposal of radioactive liquid wastes poses a particularly vexing problem, because these wastes contain various radionuclides and chemicals used in processing operations which are potentially dangerous, even in low radionuclide concentrations. Sorptive properties of minerals, particularly ion-exchange reactions, have been studied for potential direct application in waste treatment and for the purpose of defining the fate of radionuclides when released to soils and geologic formations.

Because most waste streams normally contain stable-ion concentrations far in excess of radioactive ions, sorption reactions of interest are those which exhibit high selectivity for the radionuclides. Structural and/or steric factors are generally of highest significance in selective reactions. Micaceous minerals selectively sorb radiocesium from high-sodium, aluminum, or calcium solutions, primarily because of favorable structure. Zeolitic minerals show selectivity for certain ions by excluding other ions whose sizes exceed lattice parameters. Some sorbents show selective sorption reactions under particular pH conditions; thus, alumina and related hydrous oxides selectively sorb radioactive cobalt and radiostrontium in alkaline sodium systems. In addition to the exchange reactions, sorbent properties, such as flocculation, swelling, and absorption of liquids, and chemical properties of radionuclides are important considerations in waste-disposal operations and management.

In practical applications of the sorptive phenomena in waste disposal, if is necessary to know the solution characteristics, sorbent properties, and formation char-acteristics, as well as fhe interactions of these factors. In the hydraulic-fracturing technique employed at Oak Ridge, the waste-solution characteristics influence the choice of sorbents used to prepare waste-cement slurries. The high-sodium salt concentration requires attapulgite instead of bentonite, and illite is added to fix radioactive cesium. To immobilize the mix after injection underground, cement is added, but the cement further complicates the reactions and behavior of the clay slurries. The behavior during injection and ultimate setting of the grout is further influenced by the char-acteristics of the formation.

Each underground-disposal operation will require understanding of the environment into which the waste is to be placed. The final facility and technique should be tailored to meet fhe requirements of maintaining safe operation and insuring long-term safety for future generations.

Figures & Tables





Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal