Skip to Main Content
Book Chapter

Environment Created by Vertically Moving Fluids

By
Harold L. Overton
Harold L. Overton
Consultant Houston, Texas
Search for other works by this author on:
Published:
January 01, 1978

Abstract

Movement of subsurface waters in structural basins and domes is a result of both mechanical and chemical forces. In the short term, and for larger permeabilities, water moves laterally in response to mechanical pressure differences. Over longer time periods (thousands of years), water moves vertically as a result of chemical differences in fluids.

In marine basins, the result of chemical contrasts is the movement of strong brines upward by compaction and fresh waters downward by rehydration. Rewatering or dilation examples are the Bowdoin dome, Montana, and the Wattenberg field, Colorado. The Upper Cretaceous sandstones currently are experiencing erosion and imbibition of fresh water. As a result of gas-saturated waters in reservoir rocks, free carbon dioxide spontaneously attracts fresh water from the meteoric-water zone. The resulting H2CO3 attacks carbonate cement to yield bicarbonated waters and increased permeability. Because of loss of gas volume the pressure drops, causing more water to move into the newly created paths and to dilute the previous sodium chloride brines. The entering water is shown to be fresh by its low SO4 content, for deeper waters have large gypsum components. Consequently a search for high HCO3 and slightly reduced pressure gradients is a search for better permeability. The overall process is exothermic and yields unusually high temperatures as in the Piceance basin and Wattenberg field, Colorado (evidently where the process is under way).

In the compacting basin, brines forced upward are enriched by the leaching of marine shales and possibly bedded salt. The easiest volume reduction is by water emerging from fractures as the basin settles. This water is dominantly a NA Cl type with significant Ca SO4-- and other compounds, which may be used to identify the source whenever waters are mapped in three dimensions.

The precipitation of CaCO3 cement or vice-versa, the dissolution to form bicarbonate, is a valuable basin-dynamics indicator, and it may be evaluated directly from well logs. A water-traffic map may be constructed for the Mowry Shale, for example, by contouring the vertical resistivity gradient in this middle Cretaceous sedimentary rock.

Considerable exploration information is available from well logs using vertical profiles which are related to water chemistry. The interpretation of water chemistry can provide clues for the location of oil and gas deposits.

You do not currently have access to this article.

Figures & Tables

Contents

AAPG Continuing Education Course Notes Series

Physical and Chemical Constraints on Petroleum Migration

William H. Roberts, III
William H. Roberts, III
Gulf Research and Development
Search for other works by this author on:
Robert J. Cordell
Robert J. Cordell
Cordell Reports, Inc.
Search for other works by this author on:
American Association of Petroleum Geologists
Volume
8
ISBN electronic:
9781629811970
Publication date:
January 01, 1978

GeoRef

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal