Back Matter
- PDF LinkChapter PDF
- Share
-
Tools
1979. "Back Matter", Geology of Carbonate Porosity, Don Bebout, Graham Davies, Clyde H. Moore, Peter S. Scholle, Norman C. Wardlaw
Download citation file:
×
Figures & Tables
Contents
Geology of Carbonate Porosity

In clastic situations, primary porositv is a direct function of texture and fabric, including size, sorting and shape (Fig. 1). Grain size, sorting, fabric, as well as sedimentary structures are related directly to sedimentary processes acting at the time of deposition (Fig. 1). Each depositional environment is characterized by a distinct suite of processes distributed across the active sediment water interface in a pattern unique for that environment (Fig.2). This suite of processes gives rise to a group of products, including sediment texture, fabric, and structures distributed across the active sediment water interface in a pattern unique for each depositional environment (Figs. 1 and 2). In a prograding or regressive situation, when sedimentation is taking place at the active sediment-water interface, a vertical sequence of sediments is formed which reflects, in an orderly fashion, from deepest at the base, to shallowest at the top, the progressive changes in texture, fabric and sedimentary structures resulting from the progressive changes in processes found along this interface from shallow to deep water (Fig. 3). Each sedimentary environment then, can be characterized by a unique vertical sequence of sediment textures, fabrics and sedimentary structures. It is this unique suite of characteristics that is commonly used for the identification of depositional environments in ancient rock sequences, and most importantly, is used to predict the presence and detailed distribution of the most porous (best sorted, coarsest) potential reservoir facies (Fig. 3).
In a regional setting, the recognition of distinct sedimentary environments and knowledge of logical lateral relationships is the keystone for prediction of the lateral extension or even presence of potential reservoir facies.