Skip to Main Content
Book Chapter

Fluid Flow, Pore Pressure, Wettability, and Leakage in Mudstone Cap Rocks

By
Andrew C. Aplin
Andrew C. Aplin
School of Civil Engineering and Geosciences, University of Newcastle, Newcastle upon Tyne, United Kingdom
Search for other works by this author on:
Steve R. Larter
Steve R. Larter
School of Civil Engineering and Geosciences, University of Newcastle, Newcastle upon Tyne, United Kingdom Present address: Department of Geology and Geophysics, University of Calgary, Calgary, Alberta, Canada
Search for other works by this author on:
Published:
January 01, 2005

Abstract

This chapter considers some of the issues surrounding the modeling of one- and two-phase fluid flow in mudstones. For single-phase flow, key relationships include those between porosity and (1) effective stress, (2) permeability, and (3) capillary breakthrough pressure. All three relationships are strongly influenced by the grain-size distribution or clay fraction of mudstones, but a quantitative description is currently only available for the porosity-effective stress relationship. The importance of lithology or clay fraction as a control on the key flow properties of mudstones indicates the practical significance of estimating clay fraction directly from geophysical logs. This chapter illustrates how artificial neural networks can be used to perform this task.

Having considered some of the basic flow properties of mudstones, the second part of the chapter discusses aspects of two-phase flow through mudstone pore systems. Rates, mechanisms, and pathways of petroleum leakage through mudstone pore systems remain poorly constrained. In this chapter, field and experimental data is combined with theoretical arguments to suggest that once a water-wet cap rock is breached, the leak path will become more oil wet as a result of sorption of hydrophilic and ultimately hydrophobic organic compounds onto mineral surfaces. Oil-water partition of hydrophilic organic compounds in reservoirs, followed by diffusion into cap rock pores may even create oil-wet pathways into cap rocks and permit leakage. In these cases, cap rocks simply retard the vertical migration of petroleum, and column height is a function of the rates of petroleum supply and loss. Modeling the rate of loss of petroleum requires a better understanding of mudstone relative permeability.

You do not currently have access to this article.
Don't already have an account? Register

Figures & Tables

Contents

AAPG Hedberg Series

Evaluating Fault and Cap Rock Seals

Peter Boult
Peter Boult
Search for other works by this author on:
John Kaldi
John Kaldi
Search for other works by this author on:
American Association of Petroleum Geologists
Volume
2
ISBN electronic:
9781629810423
Publication date:
January 01, 2005

GeoRef

References

Related

A comprehensive resource of eBooks for researchers in the Earth Sciences

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal