Skip to Main Content
Book Chapter

A theoretical overview of model-based and correlation-based redatuming methods

By
Gerard T. Schuster
Gerard T. Schuster
University of Utah, Department of Geology and Geophysics, Salt Lake City, Utah 84112. E-mail: schuster@mines.utah.edu; mzhou04@hotmail.com
Search for other works by this author on:
Min Zhou
Min Zhou
University of Utah, Department of Geology and Geophysics, Salt Lake City, Utah 84112. E-mail: schuster@mines.utah.edu; mzhou04@hotmail.com
Search for other works by this author on:
Published:
January 01, 2008

Abstract

We review the equations for correlation-based redatuming methods. A correlation-based redatuming method uses natural-phase information in the data to time shift the weighted traces so they appear to be generated by sources (or recorded by geophones) shifted to a new location. This compares to model-based redatuming, which effectively time shifts the traces using traveltimes computed from a prior velocity model. For wavefield redatuming, the daylight imaging, interferometric imaging, reverse-time acoustics (RTA), and virtual-source methods all require weighted correlation of the traces with one another, followed by summation over all sources (and sometimes receivers). These methods differ from one another by their choice of weights. The least-squares interferometry and virtual-source imaging methods are potentially the most powerful because they account for the limited source and receiver aperture of the recording geometry. Interferometry, on the other hand, has the flexibility to select imaging conditions that target almost any type of event. Stationary-phase principles lead to a Fermat-based redatuming method known as redatuming by a seminatural Green’s function. No crosscorrelation is needed, so it is less expensive than the other methods. Finally, Fermat’s principle can be used to redatum traveltimes.

You do not currently have access to this article.

Figures & Tables

Contents

Society of Exploration Geophysicists Geophysics Reprint Series

Seismic Interferometry: History and Present Status

Kees Wapenaar
Kees Wapenaar
Search for other works by this author on:
Deyan Draganov
Deyan Draganov
Search for other works by this author on:
Johan O.A. Robertsson
Johan O.A. Robertsson
Search for other works by this author on:
Society of Exploration Geophysicists
Volume
26
ISBN electronic:
9781560801924
Publication date:
January 01, 2008

GeoRef

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal