Tectonics and Metallogeny of the Tethyan Orogenic Belt

The Tethyan orogenic belt stretches from the Alps, through the Carpathians and Balkans, Taurides and Caucasus, Zagros, Makran, and Himalayas, to Indochina and into the southwest Pacific Ocean. It represents a complete Wilson Cycle, from opening and closure of the Paleotethys Ocean in the mid-Paleozoic to the Late Triassic, opening of the Neotethys Ocean in the Permian-Early Triassic, and its progressive closure throughout the late Mesozoic and Cenozoic eras. The current state of the orogen includes all stages of convergence from active subduction beneath the Makran and eastern Mediterranean, through advanced continental collision in the Caucasus/Taurides and Zagros, to syn- to postcollisional readjustment in the Carpathians, Balkans, Himalayas, and Indochina (Richards, 2015).
The region has been the focus of significant recent attention from geologists interested both in its tectonic evolution and metallogeny, made possible by increased accessibility to many of the geographic sections of the orogen. Key breakthroughs in understanding its tectonic history have come through improved geochronological techniques and expansion of the database of samples and events dated, combined with more accurate paleogeographic and tectonic models. In parallel, an improved understanding of the subtle relationships between tectonomagmatic and metallogenic processes have refined interpretations that were once based on simplistic assumptions (e.g., that porphyry deposits only form above active subduction zones). Indeed, economic geologists have been among the key drivers of these advances by demanding more accurate and predictive tectonomagmatic models for ore formation that can reliably inform mineral exploration.
Consequently, the Tethyan orogen is now understood to be the best preserved global example of a collisional orogen, where all stages of convergence can be observed in real or recent geological time, and the detailed relationships to ore formation, commonly reflecting tectonic changes measured on submillion-year timescales, can be accurately documented and modeled.
In this volume, we present a selection of papers that showcase this advancement in knowledge, with examples from Eastern Europe to South Asia.Beginning in the Balkans, Knaak et al. (2016) describe the variety of mineral deposits that occur in the emergent worldclass Timok region of eastern Serbia. The origin of the Late Cretaceous Timok Magmatic Complex remains debated, but the authors propose that arc magmatism was focused by dextral transtensional structures, followed by complex structural rearrangement in the Cenozoic. Porphyry Cu-Au deposits, polymetallic replacement deposits, and sedimentary rockhosted Au deposits occur in close spatial, and possibly genetic, relationship to the Late Cretaceous arc rocks. A key contribution of this study is the detailed reconstruction of later Cenozoic fault movements that led to structural dislocation and oroclinal bending, complicating geologic and metallogenic correlations in the region.
Geologic Setting and Tectonic Evolution of Porphyry Cu-Au, Polymetallic Replacement, and Sedimentary Rock-Hosted Au Deposits in the Northwestern Area of the Timok Magmatic Complex, Serbia
-
Published:January 01, 2016
-
CiteCitation
M. Knaak, I. Márton, R. M. Tosdal, J. van der Toorn, D. Davidović, I. Strmbanović, M. Zdravković, J. Živanovkć, S. Hasson, 2016. "Geologic Setting and Tectonic Evolution of Porphyry Cu-Au, Polymetallic Replacement, and Sedimentary Rock-Hosted Au Deposits in the Northwestern Area of the Timok Magmatic Complex, Serbia", Tectonics and Metallogeny of the Tethyan Orogenic Belt, Jeremy P. Richards
Download citation file:
- Share
-
Tools
Abstract
A northerly trending zone of porphyry Cu-Au, porphyry Au, polymetallic replacement Pb-Zn-Au-Ag, and sedimentary rock-hosted Au deposits along the northwest margin of the Late Cretaceous Timok Magmatic Complex forms a part of the Bor metallogenic zone in eastern Serbia. The porphyry Cu-Au, epithermal quartz-alunite, and polymetallic replacement deposits in the northwest margin of the Complex represent parts of zoned magmatic-hydrothermal systems that are linked to Late Cretaceous oxidized, hornblende-biotite diorite porphyry intruded over a ~5- to 6-m.y. period between 83.6 ± 0.5 and 78.5 ± 1.3 Ma (U-Pb SHRIMP-RG ages on zircon), making them slightly younger than the larger...
- absolute age
- amphibole group
- Balkan Peninsula
- biotite
- Cenozoic
- chain silicates
- clinoamphibole
- copper ores
- Cretaceous
- dates
- diorites
- Europe
- gold ores
- hornblende
- hydrothermal alteration
- igneous rocks
- ion probe data
- lead ores
- lead-zinc deposits
- mass spectra
- Mesozoic
- metal ores
- metallogeny
- metasomatism
- mica group
- mineral deposits, genesis
- Miocene
- Neogene
- orogeny
- plutonic rocks
- polymetallic ores
- porphyry copper
- sedimentary rocks
- Serbia
- sheet silicates
- SHRIMP data
- silicates
- Southern Europe
- spectra
- structural controls
- tectonics
- Tertiary
- U/Pb
- Upper Cretaceous
- Variscan Orogeny
- zinc ores
- eastern Serbia
- Timok Complex
- Bor metallogenic zone
- Timok-Cerna fault zone