Skip to Main Content
Skip Nav Destination

Direct measurements of porosities from Tertiary and Cretaceous shales in the Texas-Louisiana Gulf Coast show that in many areas shale porosity is either constant or increasing at the depths where high overpressures occur andwhere hydrocarbons are being generated. In the absence of a decrease in porosity with sediment load (depth), gasgeneration becomes the principal cause of overpressures and hydrocarbon expulsion.

Gulf Coast shale porosities decrease exponentially in normally compacting shales only down to porosities of about 30%, after which the decrease is linear until a constant porosity is reached. These linear trends are believedto be related to the high quartz content (74%) of the clay-size fraction (=4 microns).

The depths at which shales reach relatively constant porosity values appear to depend on the internal surface areas of the shales. Shales containing minerals with small, internal surface areas, such as finegrained quartz andcarbonates, stop compacting at porosities around 3%, whereas shales containing minerals with large surface areas, such as smectite and illite, stop compacting around 10%. This interval of no compaction usually is reached at depths around 3 to 4 kilometers (temperatures of 85° to 110°C) prior to the development of deep high overpressures and the generation of large quantities of hydrocarbons in the Gulf Coast. Model studies indicate that gas generation is the dominant process creating these deep overpressures.

The porosity-depth profiles that show a linear decrease with depth followed by a constant porosity do not conform to the hypothesized exponential profiles used in many modeling programs today. This means that more direct shale porosity measurements are needed to confirm the type of profiles that actually exist and should be used in any basin modeling program.

You do not currently have access to this chapter.

Figures & Tables





Citing Books via

Close Modal

or Create an Account

Close Modal
Close Modal