Skip to Main Content
Book Chapter

Structural Geology, Seismic Imaging, and Genesis of the Giant Jonah Gas Field, Wyoming, U.S.A.

By
William B. Hanson
William B. Hanson
Consultant and Independent Geologist, Vernonia, Oregon, U.S.A.
Search for other works by this author on:
Victor Vega
Victor Vega
BP America Production Company, Houston, Texas, U.S.A.
Search for other works by this author on:
Dennis Cox
Dennis Cox
BP America Production Company, Houston, Texas, U.S.A.
Search for other works by this author on:
Published:
January 01, 2004

Abstract

Jonah field, Wyoming’s second largest gas producer, is a structurally controlled trap located in the northwestern part of the Green River basin. Gas and condensate are produced from innumerable latest Cretaceous and early Tertiary overpressured tight-gas sandstones at depths of 7300–12,800 ft (2200–3900 m). Jonah field is remarkable for many reasons, including the large per-well reserves (relative to other tight-gas reservoirs), hundreds of feet of net pay, and a gross producing interval as great as 4000 ft (1220 m) thick. These superlative production characteristics exist, despite the fact that the structural trap is subtle and locally cryptic.

Advanced seismic techniques define the Jonah trap boundaries and add value when they are used to position wells in proximity to the faults and on subtle structures. One of the main seismic techniques is a three-dimensional, broadband, amplitude-based coherency algorithm that has edge-detection capabilities. This algorithm analyzes the reflector amplitude gradient and records the lateral change in amplitude with azimuthal angle, which allows the interpreter to illuminate a particular feature from the optimal angle to reveal the maximum detail in the data.

Gas entrapment at Jonah field is enabled by two bounding faults. Fault throw is variable but commonly less than 200 ft (60 m), and the major faults are nearly vertical. Two field-bounding fault zones, the west fault and south Jonah fault, intersect updip toward the southwest to create the overall wedge-shaped trap. The updip edge of a tilted fault block underlies the prolific Stud Horse Butte anticline and the Cabrito nose trends. The principal in-field faults terminate at the south Jonah fault to form four compartments, each comprised of a northeast-plunging, faulted nose or homocline bounded on the west and south by faults. The Jonah faults juxtapose high- and low-reserve wells; high-reserve wells are concentrated on the east side of the north- and northeast-trending faults, regardless of their sense of displacement.

The south Jonah fault is probably a left-lateral, wrench-fault zone. The south Jonah fault was active concurrently with Lance Formation deposition, resulting in thicker Lance north of the fault in the center of the field and thin along the updip edge of the tilted block. Subsequent post-Paleocene motion on the fault caused formation of the Stud Horse Butte anticline, which is evident in the basal Tertiary strata.

Jonah is a multipay field with numerous productive lenticular, fluvial sandstones. Whereas local structural features control the Jonah trap, regional structural elements shaped the fluvial system that deposited the reservoir sandstones. Regional structural features also affected the burial history that resulted in petroleum generation. Gas isotope composition and the thermal maturity of the producing strata indicate that the field produces hydrocarbons formed in deeper strata. The gas field shows evidence of paleostructural growth, which, in combination with the production pattern along the faults and the ‘‘bottoms-up’’ origin of the gas, may explain the enigmatic charging of these low-permeability sandstone bodies according to structural position, i.e., segregation by buoyancy. In this scenario, gas emplacement occurred before the reduction of sandstone permeability to the present condition.

You do not currently have access to this article.

Figures & Tables

Contents

AAPG Studies in Geology

Jonah Field: Case Study of a Tight-Gas Fluvial Reservoir

John W. Robinson
John W. Robinson
Search for other works by this author on:
Keith W. Shanley
Keith W. Shanley
Search for other works by this author on:
American Association of Petroleum Geologists
Volume
52
ISBN electronic:
9781629810522
Publication date:
January 01, 2004

GeoRef

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal