Skip to Main Content

Abstract

A new kind of fracture-permeability model called the fractured continuum model (FCM) is presented that incorporates the advantages of discrete fracture network models and the processing speed of effective continuum representations of fracture permeability. Observations of fracture orientation, length, frequency, and transmissivity from boreholes and outcrops are used as input to the FCM approach. Geostatistical realizations of fracture connectivity, represented by the coordination number of a local percolation network, and fracture frequency are combined with object-based simulations of high- and low-permeability classes in the model domain. At each location, these three spatially variable properties are combined into an effective grid-block permeability using an approximation based on the effective medium theory. The resulting realizations of fracture permeability, containing greater than 106 elements, are used as input to a single-phase flow model. A parallel computer platform coupled with a unique groundwater flow code is used to efficiently solve steady-state pressure fields on multiple realizations. The ability to solve many realizations in a short amount of time allows for the evaluation of the effects of two different conceptual models of fracture permeability on particle traveltimes.

You do not currently have access to this chapter.

Figures & Tables

Contents

GeoRef

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal