Skip to Main Content
Book Chapter

Methane-hydrate Laboratory and Modeling Research: Bridging the Gap

By
Charles E. Taylor
Charles E. Taylor
U.S. Department of Energy, National Energy Technology Laboratory, Pittsburgh, Pennsylvania, U.S.A.
Search for other works by this author on:
Jonathan Lekse
Jonathan Lekse
U.S. Department of Energy, National Energy Technology Laboratory, Pittsburgh, Pennsylvania, U.S.A.
Search for other works by this author on:
Niall English
Niall English
U.S. Department of Energy, National Energy Technology Laboratory, Pittsburgh, Pennsylvania, U.S.A.
Search for other works by this author on:
Published:
January 01, 2009

Abstract

Methane hydrates are clathrates (crystalline solids whose building blocks consist of a gas molecule that stabilizes and is surrounded by a cage of water molecules) where methane is the guest molecule. Methane hydrates are stable and occur naturally in continental margin and permafrost sediment. At standard temperature and pressure (STP), one volume of saturated methane hydrates contains approximately 180 volumes of methane. Current estimates suggest that at least twice as much organic carbon is contained in methane hydrates as all other forms of fossil fuels combined. The methane-hydrate deposits along the coast and in permafrost areas of the United States contain an estimated 320,000 tcf (9000 tcm) of methane. To tap into this vast resource, research is needed to understand the fundamental physical properties of hydrates.

This chapter is an introduction to the National Energy Technology Laboratory (NETL) hydrate facilities and capabilities. The NETL Methane Hydrate Research Group conducts research in four key areas: modeling, computation, thermodynamic properties, and kinetic properties. Our modeling focuses on flow simulation in reservoirs. Computational research models hydrate formation and dissociation. Thermodynamic properties research focuses on measurements of both synthetic and naturally occurring hydrates. Kinetic properties research measures the kinetic properties of methane hydrates (both synthetic and naturally occurring), including the physical properties of hydrates synthesized in one of the many view cells at NETL that range in volume from 1 mL to 15 L.

You do not currently have access to this article.

Figures & Tables

Contents

AAPG Memoir

Natural Gas Hydrates—Energy Resource Potential and Associated Geologic Hazards

T. Collett
T. Collett
Search for other works by this author on:
A. Johnson
A. Johnson
Search for other works by this author on:
C. Knapp
C. Knapp
Search for other works by this author on:
R. Boswell
R. Boswell
Search for other works by this author on:
American Association of Petroleum Geologists
Volume
89
ISBN electronic:
9781629810270
Publication date:
January 01, 2009

GeoRef

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal